Inferred variables in data assimilation: quantifying sensitivity to inaccurate error statistics

Author(s):  
Martin Juckes ◽  
Bryan Lawrence
2005 ◽  
Vol 133 (8) ◽  
pp. 2310-2334 ◽  
Author(s):  
Anna Borovikov ◽  
Michele M. Rienecker ◽  
Christian L. Keppenne ◽  
Gregory C. Johnson

Abstract One of the most difficult aspects of ocean-state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model–observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross covariances between different model variables used. Here a comparison is made between a univariate optimal interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature profiles. In the UOI case only temperature is updated using a Gaussian covariance function. In the MvOI, salinity, zonal, and meridional velocities as well as temperature are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimate of the forecast error statistics is made by Monte Carlo techniques from an ensemble of model forecasts. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross covariances between the fields of different physical variables constituting the model-state vector, at the same time incorporating the model’s dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere–Ocean array have been assimilated in this study. To investigate the efficacy of the multivariate scheme, two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity, and temperature. For reference, a control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when the multivariate correction is used, as is evident from the analyses of the rms differences between these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating water masses with properties close to the observed, while the UOI fails to maintain the temperature and salinity structure.


2007 ◽  
Vol 135 (12) ◽  
pp. 4006-4029 ◽  
Author(s):  
C. A. Reynolds ◽  
M. S. Peng ◽  
S. J. Majumdar ◽  
S. D. Aberson ◽  
C. H. Bishop ◽  
...  

Abstract Adaptive observing guidance products for Atlantic tropical cyclones are compared using composite techniques that allow one to quantitatively examine differences in the spatial structures of the guidance maps and relate these differences to the constraints and approximations of the respective techniques. The guidance maps are produced using the ensemble transform Kalman filter (ETKF) based on ensembles from the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts (ECMWF), and total-energy singular vectors (TESVs) produced by ECMWF and the Naval Research Laboratory. Systematic structural differences in the guidance products are linked to the fact that TESVs consider the dynamics of perturbation growth only, while the ETKF combines information on perturbation evolution with error statistics from an ensemble-based data assimilation scheme. The impact of constraining the SVs using different estimates of analysis error variance instead of a total-energy norm, in effect bringing the two methods closer together, is also assessed. When the targets are close to the storm, the TESV products are a maximum in an annulus around the storm, whereas the ETKF products are a maximum at the storm location itself. When the targets are remote from the storm, the TESVs almost always indicate targets northwest of the storm, whereas the ETKF targets are more scattered relative to the storm location and often occur over the northern North Atlantic. The ETKF guidance often coincides with locations in which the ensemble-based analysis error variance is large. As the TESV method is not designed to consider spatial differences in the likely analysis errors, it will produce targets over well-observed regions, such as the continental United States. Constraining the SV calculation using analysis error variance values from an operational 3D variational data assimilation system (with stationary, quasi-isotropic background error statistics) results in a modest modulation of the target areas away from the well-observed regions, and a modest reduction of perturbation growth. Constraining the SVs using the ETKF estimate of analysis error variance produces SV targets similar to ETKF targets and results in a significant reduction in perturbation growth, due to the highly localized nature of the analysis error variance estimates. These results illustrate the strong sensitivity of SVs to the norm (and to the analysis error variance estimate used to define it) and confirm that discrepancies between target areas computed using different methods reflect the mathematical and physical differences between the methods themselves.


2014 ◽  
Vol 142 (10) ◽  
pp. 3586-3613 ◽  
Author(s):  
A. Routray ◽  
S. C. Kar ◽  
P. Mali ◽  
K. Sowjanya

Abstract In a variational data assimilation system, background error statistics (BES) spread the influence of the observations in space and filter analysis increments through dynamic balance or statistical relationships. In a data-sparse region such as the Bay of Bengal, BES play an important role in defining the location and structure of monsoon depressions (MDs). In this study, the Indian-region-specific BES have been computed for the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system. A comparative study using single observation tests is carried out using the computed BES and global BES within the WRF system. Both sets of BES are used in the assimilation cycles and forecast runs for simulating the meteorological features associated with the MDs. Numerical experiments have been conducted to assess the relative impact of various BES in the analysis and simulations of the MDs. The results show that use of regional BES in the assimilation cycle has a positive impact on the prediction of the location, propagation, and development of rainbands associated with the MDs. The track errors of MDs are smaller when domain-specific BES are used in the assimilation cycle. Additional experiments have been conducted using data from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) as initial and boundary conditions (IBCs) in the assimilation cycle. The results indicate that the use of domain-dependent BES and high-resolution ERA-I data as IBCs further improved the initial conditions for the model leading to better forecasts of the MDs.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1460
Author(s):  
Vincent Chabot ◽  
Maëlle Nodet ◽  
Arthur Vidard

Accounting for realistic observation errors is a known bottleneck in data assimilation, because dealing with error correlations is complex. Following a previous study on this subject, we propose to use multiscale modelling, more precisely wavelet transform, to address this question. This study aims to investigate the problem further by addressing two issues arising in real-life data assimilation: how to deal with partially missing data (e.g., concealed by an obstacle between the sensor and the observed system), and how to solve convergence issues associated with complex observation error covariance matrices? Two adjustments relying on wavelets modelling are proposed to deal with those, and offer significant improvements. The first one consists of adjusting the variance coefficients in the frequency domain to account for masked information. The second one consists of a gradual assimilation of frequencies. Both of these fully rely on the multiscale properties associated with wavelet covariance modelling. Numerical results on twin experiments show that multiscale modelling is a promising tool to account for correlations in observation errors in realistic applications.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 125 ◽  
Author(s):  
Sarah Dance ◽  
Susan Ballard ◽  
Ross Bannister ◽  
Peter Clark ◽  
Hannah Cloke ◽  
...  

The FRANC project (Forecasting Rainfall exploiting new data Assimilation techniques and Novel observations of Convection) has researched improvements in numerical weather prediction of convective rainfall via the reduction of initial condition uncertainty. This article provides an overview of the project’s achievements. We highlight new radar techniques: correcting for attenuation of the radar return; correction for beams that are over 90% blocked by trees or towers close to the radar; and direct assimilation of radar reflectivity and refractivity. We discuss the treatment of uncertainty in data assimilation: new methods for estimation of observation uncertainties with novel applications to Doppler radar winds, Atmospheric Motion Vectors, and satellite radiances; a new algorithm for implementation of spatially-correlated observation error statistics in operational data assimilation; and innovative treatment of moist processes in the background error covariance model. We present results indicating a link between the spatial predictability of convection and convective regimes, with potential to allow improved forecast interpretation. The research was carried out as a partnership between University researchers and the Met Office (UK). We discuss the benefits of this approach and the impact of our research, which has helped to improve operational forecasts for convective rainfall events.


2017 ◽  
Vol 146 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Sam Hatfield ◽  
Aneesh Subramanian ◽  
Tim Palmer ◽  
Peter Düben

Abstract A new approach for improving the accuracy of data assimilation, by trading numerical precision for ensemble size, is introduced. Data assimilation is inherently uncertain because of the use of noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower-precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, computational resources can be redistributed toward, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localization, lowering precision could actually permit an improvement in the accuracy of weather forecasts. Here, this idea is tested on an ensemble data assimilation system comprising the Lorenz ’96 toy atmospheric model and the ensemble square root filter. The system is run at double-, single-, and half-precision (the latter using an emulation tool), and the performance of each precision is measured through mean error statistics and rank histograms. The sensitivity of these results to the observation error and the length of the observation window are addressed. Then, by reinvesting the saved computational resources from reducing precision into the ensemble size, assimilation error can be reduced for (hypothetically) no extra cost. This results in increased forecasting skill, with respect to double-precision assimilation.


2016 ◽  
Vol 34 (2) ◽  
pp. 187-201 ◽  
Author(s):  
M. Dhanya ◽  
A. Chandrasekar

Abstract. The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.


2000 ◽  
Vol 31 ◽  
pp. 327-332 ◽  
Author(s):  
Ronald L. S. Weaver ◽  
Konrad Steffen ◽  
John Heinrichs ◽  
James A. Maslanik ◽  
Gregory M. Flato

AbstractThe detection of small changes in concentration or thickness in the Arctic or Antarctic ice cover is an important topic in the current global-climate-change debate. Change detection using satellite data alone requires rigorous error analysis for their derived ice products, including inter-satellite validation for long time series. All models of physical processes are only approximations, and the best models of complicated physical processes have errors and uncertainties. A promising approach is data assimilation, combining model, in situ data and satellite remote-sensing data. Sea-ice monitoring from satellite, ice-model estimates, and the potential benefit of combining the two are discussed in some detail. In a case-study we demonstrate how the sea-ice backscatter for the Beaufort Sea region was derived using a backscattering model in combination with an ice model. We conclude that, for data assimilation, the first steps include the use of simple models, moving, with success at this level, to progressively more complex models. We also recommend reconfiguring the current remote-sensing data to include precise time tags with each pixel. For example, the current Special Sensor Microwave Imager data might be reissued in a time-tagged orbital (or gridded) format as opposed to the currently available daily averaged gridded data. Finally, error statistics and quality-control information also need to be readily available in a form useful for assimilation. The effectiveness of data-assimilation techniques is directly linked to the availability of data error statistics.


Sign in / Sign up

Export Citation Format

Share Document