A Novel Method for Gender and Age Detection Based on EEG Brain Signals

Author(s):  
Haitham Issa ◽  
Sali Issa ◽  
Wahab Shah

This paper presents a new gender and age classification system based on Electroencephalography (EEG) brain signals. First, Continuous Wavelet Transform (CWT) technique is used to get the time-frequency information of only one EEG electrode for eight distinct emotional states instead of the ordinary neutral or relax states. Then, sequential steps are implemented to extract the improved grayscale image feature. For system evaluation, a three-fold-cross validation strategy is applied to construct four different classifiers. The experimental test shows that the proposed extracted feature with Convolutional Neural Network (CNN) classifier improves the performance of both gender and age classification, and achieves an average accuracy of 96.3% and 89% for gender and age classification, respectively. Moreover, the ability to predict human gender and age during the mood of different emotional states is practically approved.

2016 ◽  
Vol 43 (2) ◽  
pp. 159-173 ◽  
Author(s):  
Amer Al-Badarneh ◽  
Emad Al-Shawakfa ◽  
Basel Bani-Ismail ◽  
Khaleel Al-Rababah ◽  
Safwan Shatnawi

This paper investigates the impact of using different indexing approaches (full-word, stem, and root) when classifying Arabic text. In this study, the naïve Bayes classifier is used to construct the multinomial classification models and is evaluated using stratified k-fold cross-validation ( k ranges from 2 to 10). It is also uses a corpus that consists of 1000 normalized Arabic documents. The results of one experiment in this study show that significant accuracy improvements have occurred when the full-word form is used in most k-folds. Further experiments show that the classifier has achieved the highest accuracy in the eight-fold by using 7/8–1/8 train–test ratio, despite the indexing approach being used. The overall results of this study show that the classifier has achieved the maximum micro-average accuracy 99.36%, either by using the full-word form or the stem form. This proves that the stem is a better choice to use when classifying Arabic text, because it makes the corpus dataset smaller and this will enhance both the processing time and storage utilization, and achieve the highest level of accuracy.


Land ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 174
Author(s):  
Desheng Wang ◽  
A-Xing Zhu

Digital soil mapping (DSM) is currently the primary framework for predicting the spatial variation of soil information (soil type or soil properties). Random forests and similarity-based methods have been used widely in DSM. However, the accuracy of the similarity-based approach is limited, and the performance of random forests is affected by the quality of the feature set. The objective of this study was to present a method for soil mapping by integrating the similarity-based approach and the random forests method. The Heshan area (Heilongjiang province, China) was selected as the case study for mapping soil subgroups. The results of the regular validation samples showed that the overall accuracy of the integrated method (71.79%) is higher than that of a similarity-based approach (58.97%) and random forests (66.67%). The results of the 5-fold cross-validation showed that the overall accuracy of the integrated method, similarity-based approach, and random forests range from 55% to 72.73%, 43.48% to 69.57%, and 54.17% to 70.83%, with an average accuracy of 66.61%, 57.39%, and 59.62%, respectively. These results suggest that the proposed method can produce a high-quality covariate set and achieve a better performance than either the random forests or similarity-based approach alone.


Author(s):  
Michal Ptaszynski ◽  
Fumito Masui ◽  
Yoko Nakajima ◽  
Yasutomo Kimura ◽  
Rafal Rzepka ◽  
...  

This paper presents a novel method of analyzing morphosemantic patterns in language to the detect cyberbullying, or frequently appearing harmful messages and entries that aim to humiliate other users. The morphosemantic patterns represent a novel concept, with the assumption that analyzed elements can be perceived as a combination of morphological information, such as parts of speech, and semantic information, such as semantic roles, categories, etc. The patterns are further automatically extracted from the data containing harmful entries (cyberbullying) and non-harmful entries found on the informal websites of Japanese high schools. These website data were prepared and standardized by the Human Rights Center in Mie Prefecture, Japan. The patterns extracted in this way are further applied to a document classification task using the provided data in 10-fold cross-validation. The results indicate that morphosemantic sentence representation can be considered useful in the task of detecting the deceptive and provocative language used in cyberbullying.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750050 ◽  
Author(s):  
Hua Tang ◽  
Ren-Zhi Cao ◽  
Wen Wang ◽  
Tie-Shan Liu ◽  
Li-Ming Wang ◽  
...  

Improving thermostability of an enzyme can accelerate the relevant chemical reaction. Thus, the analysis and prediction of thermophilic proteins are conducive to protein engineering and enzyme design. In this study, a novel method based on two-step discrimination was proposed to distinguish between thermophilic and non-thermophilic proteins. The model was rigorously benchmarked on an objective dataset including 915 thermophilic proteins and 793 non-thermophilic proteins. Results showed that the overall accuracy of our method is 94.44% in 5-fold cross-validation, which is higher than those of other published methods. We believe that the two-step discriminated strategy will become a promising method in the relevant field of protein bioinformatics.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Si-Yuan Lu ◽  
Zheng Zhang ◽  
Yu-Dong Zhang ◽  
Shui-Hua Wang

Accurate and timely diagnosis of COVID-19 is indispensable to control its spread. This study proposes a novel explainable COVID-19 diagnosis system called CGENet based on graph embedding and an extreme learning machine for chest CT images. We put forward an optimal backbone selection algorithm to select the best backbone for the CGENet based on transfer learning. Then, we introduced graph theory into the ResNet-18 based on the k-nearest neighbors. Finally, an extreme learning machine was trained as the classifier of the CGENet. The proposed CGENet was evaluated on a large publicly-available COVID-19 dataset and produced an average accuracy of 97.78% based on 5-fold cross-validation. In addition, we utilized the Grad-CAM maps to present a visual explanation of the CGENet based on COVID-19 samples. In all, the proposed CGENet can be an effective and efficient tool to assist COVID-19 diagnosis.


2020 ◽  
Vol 2 (3) ◽  
pp. 216-232
Author(s):  
Manish Bhatt ◽  
Avdesh Mishra ◽  
Md Wasi Ul Kabir ◽  
S. E. Blake-Gatto ◽  
Rishav Rajendra ◽  
...  

File fragment classification is an essential problem in digital forensics. Although several attempts had been made to solve this challenging problem, a general solution has not been found. In this work, we propose a hierarchical machine-learning-based approach with optimized support vector machines (SVM) as the base classifiers for file fragment classification. This approach consists of more general classifiers at the top level and more specialized fine-grain classifiers at the lower levels of the hierarchy. We also propose a primitive taxonomy for file types that can be used to perform hierarchical classification. We evaluate our model with a dataset of 14 file types, with 1000 fragments measuring 512 bytes from each file type derived from a subset of the publicly available Digital Corpora, the govdocs1 corpus. Our experiment shows comparable results to the present literature, with an average accuracy of 67.78% and an F1-measure of 65% using 10-fold cross-validation. We then improve on the hierarchy and find better results, with an increase in the F1-measure of 1%. Finally, we make our assessment and observations, then conclude the paper by discussing the scope of future research.


2018 ◽  
Vol 232 ◽  
pp. 02026
Author(s):  
Lu Zhou ◽  
Guang-geng Li ◽  
Yu-mei Zhou ◽  
Dan Yin ◽  
Yan Sun ◽  
...  

In the study, we propose a TCM diagnosis model that can be used for multi-label classification and give clear diagnosis, as well as the basis for diagnosis and differentiation when the symptoms correspond to multiple diseases or syndromes. The implementation of the model is divided into three steps. Firstly, choose the machine learning algorithm to train the TCM diagnosis model. The features of the training data are symptoms and the labels are diseases or syndromes. Secondly, give the number α (α>1, α∈Z+), the model will output the diagnoses with the top α highest probability according to the input symptoms as candidate diagnoses. Finally, the rules of differential diagnosis are designed to determine which candidate diagnoses should be reserved, thereby complete the multi-label classification. In our test dataset, by 10-fold cross-validation, the average accuracy of the single label classification was 0.882; the average precision was 0.974; the average recall was 1.000; the average f1 score was 0.967; the average accuracy of the multi-label classification was 0.706; the average micro precision was 0.934; the average micro recall was 0.941 and the average hamming loss was 0.060. Through the test we can know that this model had a good potential for auxiliary decision making in clinical diagnosis and treatment.


Author(s):  
Sara Bagherzadeh ◽  

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wavelet CNNs (WCNNs) weighted layers and multiclass support vector machine (MSVM) is proposed to improve recognition of emotional states from electroencephalogram (EEG) signals. First, EEG signals were preprocessed and converted to time-frequency (T-F) color representation or scalogram using the continuous wavelet transform (CWT) method. Then, scalograms were fed into four popular pre-trained CNNs, AlexNet, ResNet-18, VGG-19 and Inception-v3 to fine-tune them. Then, the best feature layer from each one was used as input to the MSVM method to classify four quarters of the valence-arousal model. Finally, subject-independent Leave-One-Subject-Out criterion was used to evaluate the proposed method on DEAP and MAHNOB-HCI databases. Results show that extracting deep features from the earlier convolutional layer of ResNet-18 (Res2a) and classifying using the MSVM increases the average accuracy, precision and recall about 20% and 12% for MAHNOB-HCI and DEAP databases, respectively. Also, combining scalograms from four regions of pre-frontal, frontal, parietal and parietal-occipital and two regions of frontal and parietal achieved the higher average accuracy of 77.47% and 87.45% for MAHNOB-HCI and DEAP databases, respectively. Combining CNN and MSVM increased recognition of emotion from EEG signal and results were comparable to state-of-the-art studies.


Author(s):  
Laboni Sarker ◽  
Md. Mohaiminul Islam ◽  
Tanveer Hannan ◽  
Zakaria Ahmed

Coronavirus disease (COVID-19) is a pandemic infectious disease that has a severe risk of spreading rapidly. The quick identification and isolation of the affected persons is the very first step to fight against this virus. In this regard, chest radiology images have been proven to be an effective screening approach of COVID-19 affected patients. A number of AI based solutions have been developed to make the screening of radiological images faster and more accurate in detecting COVID-19. In this study, we are proposing a deep learning based approach using Densenet-121 to effectively detect COVID-19 patients. We incorporated transfer learning technique to leverage the information regarding radiology image learned by another model (CheXNet) which was trained on a huge Radiology dataset of 112,120 images. We trained and tested our model on COVIDx dataset containing 13,800 chest radiography images across 13,725 patients. To check the robustness of our model, we performed both two-class and three-class classifications and achieved 96.49% and 93.71% accuracy respectively. To further validate the consistency of our performance, we performed patient-wise k-fold cross-validation and achieved an average accuracy of 92.91% for three class task. Moreover, we performed an interpretability analysis using Grad-CAM to highlight the most important image regions in making a prediction. Besides ensuring trustworthiness, this explainability can also provide new insights about the critical factors regarding COVID-19. Finally, we developed a website that takes chest radiology images as input and generates probabilities of the presence of COVID-19 or pneumonia and a heatmap highlighting the probable infected regions. Code and models' weights are availabe.


2021 ◽  
Vol 15 ◽  
Author(s):  
Li-Xiao Feng ◽  
Xin Li ◽  
Hong-Yu Wang ◽  
Wen-Yin Zheng ◽  
Yong-Qing Zhang ◽  
...  

The most important part of sleep quality assessment is the automatic classification of sleep stages. Sleep staging is helpful in the diagnosis of sleep-related diseases. This study proposes an automatic sleep staging algorithm based on the time attention mechanism. Time-frequency and non-linear features are extracted from the physiological signals of six channels and then normalized. The time attention mechanism combined with the two-way bi-directional gated recurrent unit (GRU) was used to reduce computing resources and time costs, and the conditional random field (CRF) was used to obtain information between tags. After five-fold cross-validation on the Sleep-EDF dataset, the values of accuracy, WF1, and Kappa were 0.9218, 0.9177, and 0.8751, respectively. After five-fold cross-validation on the our own dataset, the values of accuracy, WF1, and Kappa were 0.9006, 0.8991, and 0.8664, respectively, which is better than the result of the latest algorithm. In the study of sleep staging, the recognition rate of the N1 stage was low, and the imbalance has always been a problem. Therefore, this study introduces a type of balancing strategy. By adopting the proposed strategy, SEN-N1 and ACC of 0.7 and 0.86, respectively, can be achieved. The experimental results show that compared to the latest method, the proposed model can achieve significantly better performance and significantly improve the recognition rate of the N1 period. The performance comparison of different channels shows that even when the EEG channel was not used, considerable accuracy can be obtained.


Sign in / Sign up

Export Citation Format

Share Document