Buildings and building-related facilities. Functional and user requirements and performance. Tools for assessment and comparison

2012 ◽  
1985 ◽  
Vol 13 (3) ◽  
pp. 222 ◽  
Author(s):  
AS Kleinberg ◽  
RL Meltzer ◽  
JR Schroeder ◽  
B Benzing ◽  
MB Vieth ◽  
...  

Author(s):  
Joel Runji ◽  
Yun-Ju Lee ◽  
Chih-Hsing Chu

Abstract Maintenance of technical equipment in manufacturing is inevitable for sustained productivity with minimal downtimes. Elimination of unscheduled interruptions as well as real-time monitoring of equipment health can potentially benefit from adopting augmented reality (AR) technology. How best to employ this technology in maintenance demands a fundamental comprehension of user requirements for production planners. Despite augmented reality applications being developed to assist various manufacturing operations, no previous study has examined how these user requirements in maintenance have been fulfilled and the potential opportunities that exist for further development. Reviews on maintenance have been general on all industrial fields rather than focusing on a specific industry. In this regard, a systematic literature review was performed on previous studies on augmented reality applications in the maintenance of manufacturing entities from 2017 to 2021. Specifically, the review examines how user requirements have been addressed by these studies and identifies gaps for future research. The user requirements are drawn from the challenges encountered during AR-based maintenance in manufacturing following a similar approach to usability engineering methodologies. The needs are identified as ergonomics, communication, situational awareness, intelligence sources, feedback, safety, motivation, and performance assessment. Contributing factors to those needs are cross-tabulated with the requirements and their results presented as trends, prior to drawing insights and providing possible future suggestions for the made observations.


2018 ◽  
Vol 9 (2) ◽  
pp. 55-71
Author(s):  
Pratiksha Gautam ◽  
Hemraj Saini

Over the past few decades, many tools and methods have been proposed by several researchers to detect clones automatically in programs and software. Nevertheless, it is not yet clear how to evaluate these tools in terms of accuracy, scalability, and portability. However, all of these tools have some merits and limitations but the application of these tools depends on the user requirements, so it is necessary for the user that they should be aware of the tools and its distinguishing aspects. This article presents the performance of six clone detection tools in terms of accuracy, scalability, and portability. The aim of this study is to make the selection of tools easy for detection of copied code.


Author(s):  
Christos Bouras ◽  
Agisilaos Konidaris

This chapter presents a step-by-step approach to the design, implementation and management of a Data-Intensive Web Site (DIWS). The approach introduces five data formulation and manipulation graphs that are presented analytically. The core concept behind the modeling approach is that of “Web fragments,” that is an information decomposition technique that aids design, implementation and management of DIWS. We then present the steps that must be followed in order to “build” a DIWS based on Web fragments. Finally, we show how our approach can be used to ensure the basic DIWS user requirements of personalization, integrity and performance.


2010 ◽  
Vol 2 (1) ◽  
pp. 51-68
Author(s):  
Vijay Sahota ◽  
Maozhen Li ◽  
Marios Hadjinicolaou

Information services play a crucial role in grid computing environments in that the state information of a grid system can be used to facilitate the discovery of resources and services available to meet user requirements and help tune the performance of the grid. This article models PIndex, which is a grouped peer-to-peer network with Colored Petri Nets (CPNs) for scalable grid information services. Based on the CPN model, a simulator is implemented for PIndex simulation and performance evaluation. The correctness of the simulator is further verified by comparing the results computed from the CPN model with the results generated by the PIndex simulator.


Author(s):  
H. M. Thieringer

It has repeatedly been show that with conventional electron microscopes very fine electron probes can be produced, therefore allowing various micro-techniques such as micro recording, X-ray microanalysis and convergent beam diffraction. In this paper the function and performance of an SIEMENS ELMISKOP 101 used as a scanning transmission microscope (STEM) is described. This mode of operation has some advantages over the conventional transmission microscopy (CTEM) especially for the observation of thick specimen, in spite of somewhat longer image recording times.Fig.1 shows schematically the ray path and the additional electronics of an ELMISKOP 101 working as a STEM. With a point-cathode, and using condensor I and the objective lens as a demagnifying system, an electron probe with a half-width ob about 25 Å and a typical current of 5.10-11 amp at 100 kV can be obtained in the back focal plane of the objective lens.


Author(s):  
Huang Min ◽  
P.S. Flora ◽  
C.J. Harland ◽  
J.A. Venables

A cylindrical mirror analyser (CMA) has been built with a parallel recording detection system. It is being used for angular resolved electron spectroscopy (ARES) within a SEM. The CMA has been optimised for imaging applications; the inner cylinder contains a magnetically focused and scanned, 30kV, SEM electron-optical column. The CMA has a large inner radius (50.8mm) and a large collection solid angle (Ω > 1sterad). An energy resolution (ΔE/E) of 1-2% has been achieved. The design and performance of the combination SEM/CMA instrument has been described previously and the CMA and detector system has been used for low voltage electron spectroscopy. Here we discuss the use of the CMA for ARES and present some preliminary results.The CMA has been designed for an axis-to-ring focus and uses an annular type detector. This detector consists of a channel-plate/YAG/mirror assembly which is optically coupled to either a photomultiplier for spectroscopy or a TV camera for parallel detection.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


Sign in / Sign up

Export Citation Format

Share Document