The Essence of Quantum Computing

2018 ◽  
Author(s):  
Rajendra K. Bera

In Part I we laid the foundation on which quantum algorithms are built. In this part we harness such exotic aspects as superposition, entanglement and collapse of quantum states of that foundation to show how powerful quantum algorithms can be constructed for efficient computation. Appendixes A and B are provided to jog the memory of those who are recently out of touch with linear algebra and Fourier series.


2018 ◽  
Author(s):  
Rajendra K. Bera

In Part I we laid the foundation on which quantum algorithms are built. In part II we harnessed such exotic aspects of quantum mechanics as superposition, entanglement and collapse of quantum states to show how powerful quantum algorithms can be constructed for efficient computation. In Part III (the concluding part) we discuss two aspects of quantum computation: (1) the problem of correcting errors that inevitably plague physical quantum computers during computations, by algorithmic means; and (2) a possible underlying mechanism for the collapse of the wave function during measurement.



Author(s):  
Göran Pulkkis ◽  
Kaj J. Grahn

This article presents state-of-the-art and future perspectives of quantum computing and communication. Timeline of relevant findings in quantum informatics, such as quantum algorithms, quantum cryptography protocols, and quantum computing models, is summarized. Mathematics of information representation with quantum states is presented. The quantum circuit and adiabatic models of quantum computation are outlined. The functionality, limitations, and security of the quantum key distribution (QKD) protocol is presented. Current implementations of quantum computers and principles of quantum programming are shortly described.



Author(s):  
Guanglei Xu ◽  
William S. Oates

Since its inception by Richard Feynman in 1982, quantum computing has provided an intriguing opportunity to advance computational capabilities over classical computing. Classical computers use bits to process information in terms of zeros and ones. Quantum computers use the complex world of quantum mechanics to carry out calculations using qubits (the quantum analog of a classical bit). The qubit can be in a superposition of the zero and one state simultaneously unlike a classical bit. The true power of quantum computing comes from the complexity of entanglement between many qubits. When entanglement is realized, quantum algorithms for problems such as factoring numbers and solving linear algebra problems show exponential speed-up relative to any known classical algorithm. Linear algebra problems are of particular interest in engineering application for solving problems that use finite element and finite difference methods. Here, we explore quantum linear algebra problems where we design and implement a quantum circuit that can be tested on IBM’s quantum computing hardware. A set of quantum gates are assimilated into a circuit and implemented on the IBM Q system to demonstrate its algorithm capabilities and its measurement methodology.



Author(s):  
Göran Pulkkis ◽  
Kaj J. Grahn

This chapter presents state-of-the-art and future perspectives of quantum computing and communication. Timeline of relevant findings in quantum informatics, such as quantum algorithms, quantum cryptography protocols, and quantum computing models, is summarized. Mathematics of information representation with quantum states is presented. The quantum circuit and adiabatic models of quantum computation are outlined. The functionality, limitations, and security of the quantum key distribution (QKD) protocol is presented. Current implementations of quantum computers and principles of quantum programming are shortly described.



2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.



Author(s):  
Kai Li ◽  
Qing-yu Cai

AbstractQuantum algorithms can greatly speed up computation in solving some classical problems, while the computational power of quantum computers should also be restricted by laws of physics. Due to quantum time-energy uncertainty relation, there is a lower limit of the evolution time for a given quantum operation, and therefore the time complexity must be considered when the number of serial quantum operations is particularly large. When the key length is about at the level of KB (encryption and decryption can be completed in a few minutes by using standard programs), it will take at least 50-100 years for NTC (Neighbor-only, Two-qubit gate, Concurrent) architecture ion-trap quantum computers to execute Shor’s algorithm. For NTC architecture superconducting quantum computers with a code distance 27 for error-correcting, when the key length increased to 16 KB, the cracking time will also increase to 100 years that far exceeds the coherence time. This shows the robustness of the updated RSA against practical quantum computing attacks.



Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1205-1208 ◽  
Author(s):  
Michael Walter ◽  
Brent Doran ◽  
David Gross ◽  
Matthias Christandl

Entangled many-body states are an essential resource for quantum computing and interferometry. Determining the type of entanglement present in a system usually requires access to an exponential number of parameters. We show that in the case of pure, multiparticle quantum states, features of the global entanglement can already be extracted from local information alone. This is achieved by associating any given class of entanglement with an entanglement polytope—a geometric object that characterizes the single-particle states compatible with that class. Our results, applicable to systems of arbitrary size and statistics, give rise to local witnesses for global pure-state entanglement and can be generalized to states affected by low levels of noise.



2021 ◽  
Vol 3 (1) ◽  
pp. 153-165
Author(s):  
Torsten Asselmeyer-Maluga

In this paper, we will present some ideas to use 3D topology for quantum computing. Topological quantum computing in the usual sense works with an encoding of information as knotted quantum states of topological phases of matter, thus being locked into topology to prevent decay. Today, the basic structure is a 2D system to realize anyons with braiding operations. From the topological point of view, we have to deal with surface topology. However, usual materials are 3D objects. Possible topologies for these objects can be more complex than surfaces. From the topological point of view, Thurston’s geometrization theorem gives the main description of 3-dimensional manifolds. Here, complements of knots do play a prominent role and are in principle the main parts to understand 3-manifold topology. For that purpose, we will construct a quantum system on the complements of a knot in the 3-sphere. The whole system depends strongly on the topology of this complement, which is determined by non-contractible, closed curves. Every curve gives a contribution to the quantum states by a phase (Berry phase). Therefore, the quantum states can be manipulated by using the knot group (fundamental group of the knot complement). The universality of these operations was already showed by M. Planat et al.



2021 ◽  
Vol 2056 (1) ◽  
pp. 012059
Author(s):  
I N Balaba ◽  
G S Deryabina ◽  
I A Pinchuk ◽  
I V Sergeev ◽  
S B Zabelina

Abstract The article presents a historical overview of the development of the mathematical idea of a quantum computing model - a new computational strategy based on the postulates of quantum mechanics and having advantages over the traditional computational model based on the Turing machine; clarified the features of the operation of multi-qubit quantum systems, which ensure the creation of efficient algorithms; the principles of quantum computing are outlined and a number of efficient quantum algorithms are described that allow solving the problem of exponential growth of the complexity of certain problems.



Author(s):  
Renata Wong ◽  
Amandeep Singh Bhatia

In the last two decades, the interest in quantum computation has increased significantly among research communities. Quantum computing is the field that investigates the computational power and other properties of computers on the basis of the underlying quantum-mechanical principles. The main purpose is to find quantum algorithms that are significantly faster than any existing classical algorithms solving the same problem. While the quantum computers currently freely available to wider public count no more than two dozens of qubits, and most recently developed quantum devices offer some 50-60 qubits, quantum computer hardware is expected to grow in terms of qubit counts, fault tolerance, and resistance to decoherence. The main objective of this chapter is to present an introduction to the core quantum computing algorithms developed thus far for the field of cryptography.



Sign in / Sign up

Export Citation Format

Share Document