Faculty Opinions recommendation of PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1.

Author(s):  
Steven Huber
2011 ◽  
Vol 13 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Wenqiang Tang ◽  
Min Yuan ◽  
Ruiju Wang ◽  
Yihong Yang ◽  
Chunming Wang ◽  
...  

2012 ◽  
Vol 158 (4) ◽  
pp. 1955-1964 ◽  
Author(s):  
Young-Hee Cho ◽  
Jung-Woo Hong ◽  
Eun-Chul Kim ◽  
Sang-Dong Yoo

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 520
Author(s):  
Wenfeng Nie ◽  
Jinyu Wang

As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsis thaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.


2020 ◽  
Vol 13 (1) ◽  
pp. 294
Author(s):  
Khadija Nawaz ◽  
Rimsha Chaudhary ◽  
Ayesha Sarwar ◽  
Bushra Ahmad ◽  
Asma Gul ◽  
...  

Melatonin, a multifunctional signaling molecule, is ubiquitously distributed in different parts of a plant and responsible for stimulating several physiochemical responses against adverse environmental conditions in various plant systems. Melatonin acts as an indoleamine neurotransmitter and is primarily considered as an antioxidant agent that can control reactive oxygen and nitrogen species in plants. Melatonin, being a signaling agent, induces several specific physiological responses in plants that might serve to enhance photosynthesis, growth, carbon fixation, rooting, seed germination and defense against several biotic and abiotic stressors. It also works as an important modulator of gene expression related to plant hormones such as in the metabolism of indole-3-acetic acid, cytokinin, ethylene, gibberellin and auxin carrier proteins. Additionally, the regulation of stress-specific genes and the activation of pathogenesis-related protein and antioxidant enzyme genes under stress conditions make it a more versatile molecule. Because of the diversity of action of melatonin, its role in plant growth, development, behavior and regulation of gene expression it is a plant’s master regulator. This review outlines the main functions of melatonin in the physiology, growth, development and regulation of higher plants. Its role as anti-stressor agent against various abiotic stressors, such as drought, salinity, temperatures, UV radiation and toxic chemicals, is also analyzed critically. Additionally, we have also identified many new aspects where melatonin may have possible roles in plants, for example, its function in improving the storage life and quality of fruits and vegetables, which can be useful in enhancing the environmentally friendly crop production and ensuring food safety.


2008 ◽  
Vol 20 (6) ◽  
pp. 1693-1707 ◽  
Author(s):  
Feng Qin ◽  
Yoh Sakuma ◽  
Lam-Son Phan Tran ◽  
Kyonoshin Maruyama ◽  
Satoshi Kidokoro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document