Faculty Opinions recommendation of Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity.

Author(s):  
Alastair Ferguson ◽  
Andrea Mimee
2010 ◽  
Vol 30 (35) ◽  
pp. 11815-11825 ◽  
Author(s):  
M. O. Dietrich ◽  
C. Antunes ◽  
G. Geliang ◽  
Z.-W. Liu ◽  
E. Borok ◽  
...  

Endocrinology ◽  
2016 ◽  
Vol 158 (2) ◽  
pp. 419-430 ◽  
Author(s):  
Zhaofei Wu ◽  
M. Elena Martinez ◽  
Donald L. St. Germain ◽  
Arturo Hernandez

Abstract The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3−/− brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3−/− mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3−/− mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3−/− mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3−/− mice.


Obesity ◽  
2006 ◽  
Vol 14 ◽  
pp. 228S-233S ◽  
Author(s):  
Tamas L. Horvath

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Guan Wang ◽  
James Gilbert ◽  
Heng-Ye Man

Homeostatic synaptic plasticity is a negative-feedback response employed to compensate for functional disturbances in the nervous system. Typically, synaptic activity is strengthened when neuronal firing is chronically suppressed or weakened when neuronal activity is chronically elevated. At both the whole cell and entire network levels, activity manipulation leads to a global up- or downscaling of the transmission efficacy of all synapses. However, the homeostatic response can also be induced locally at subcellular regions or individual synapses. Homeostatic synaptic scaling is expressed mainly via the regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking and synaptic expression. Here we review the recently identified functional molecules and signaling pathways that are involved in homeostatic plasticity, especially the homeostatic regulation of AMPAR localization at excitatory synapses.


2016 ◽  
Vol 27 (8) ◽  
pp. 769-776 ◽  
Author(s):  
Changzheng Zhang ◽  
Peiling Zhou ◽  
Tifei Yuan

AbstractThe cerebellar cholinergic system belongs to the third type of afferent nerve fiber system (after the climbing and mossy fibers), and has important modulatory effects on cerebellar circuits and cerebellar-mediated functions. In this report, we review the cerebellar cholinergic system, including cholinergic origins and innervations, acetylcholine receptor expression and distributions, cholinergic modulations of neuronal firing and synaptic plasticity, the cholinergic role in cerebellar-mediated integral functions, and cholinergic changes during development and aging. Because some motor and mental disorders, such as cerebellar ataxia and autism, are accompanied with cerebellar cholinergic disorders, we also discuss the correlations between cerebellar cholinergic dysfunctions and these disorders. The cerebellar cholinergic input plays an important role in the modulation of cerebellar functions; therefore, cholinergic abnormalities could induce physiological dysfunctions.


2017 ◽  
Vol 95 (2) ◽  
pp. 206-214 ◽  
Author(s):  
I. Côté ◽  
Y. Sakarya ◽  
N. Kirichenko ◽  
D. Morgan ◽  
C.S. Carter ◽  
...  

Melanotan II (MTII) is a potent appetite suppressor that rapidly reduces body mass. Given the rapid loss of anorexic response upon chronic MTII treatment, most investigations have focused on the initial physiological adaptations. However, other evidence supports MTII as a long-term modulator of energy balance that remains to be established. Therefore, we examined the chronic effects of MTII on energy homeostasis. MTII (high or low dose) or artificial cerebrospinal fluid (aCSF) was infused into the lateral ventricle of the brain of 6-month-old F344BN rats (6–7/group) over 40 days. MTII suppressed appetite in a dose-dependent manner (P < 0.05). Although food intake promptly rose back to control level, body mass was persistently reduced in both MTII groups (P < 0.01). At day 40, both MTII groups displayed lower adiposity than the aCSF animals (P < 0.01). These results show that MTII chronically reduces body mass without the requirement of long-term caloric restriction. Our study proposes that food restriction helps initiate mass loss; however, combined with a secondary pharmacological approach preserving a negative energy balance state over time may help combat obesity.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A56-A57
Author(s):  
Nicole A Teaney ◽  
Nicole E Cyr

Abstract The nutrient-sensor protein Sirtuin 1 (Sirt1; silent mating type information regulation 2 homolog 1) has been shown to have significant and opposing effects on insulin resistance, leptin resistance, and body weight in the periphery and the brain. In the hypothalamic arcuate nucleus (ARC) of the brain, Sirt1 increases in the obese state and acts to promote weight gain as well as insulin and leptin resistance by increasing the orexigenic neuropeptides Agouti-related protein (AgRP) and neuropeptide Y (NPY), and in a distinct set of ARC neurons, by decreasing POMC and thus its anorexigenic derivative alpha-melanocyte stimulating hormone (alpha-MSH) (1). Sirt1’s actions on these neuropeptides are mediated at least in part by the deacetylation of the transcription factor forkhead box O1 (FOXO1). Another mechanism by which Sirt1 regulates body weight appears to be through mediating changes in the synapses of these neuropeptide-producing ARC neurons. For example, a previous study demonstrated that Sirt1 inhibition with the specific Sirt1 inhibitor, Ex-527, decreased AgRP-NPY inhibitory synaptic input on POMC neurons, which suggests that the obesity-induced increase in ARC Sirt1 would increase AgRP-NPY inhibition of POMC neurons thus promoting weight gain (2). The present study investigated how Sirt1 regulates synapses specifically in POMC-producing N43-5 neurons. Results reveal that inhibition of Sirt1 with Ex-527 significantly increased the presynaptic marker Synapsin 1 (Syn1) in N43-5 neurons. Furthermore, we investigated whether the Sirt1 target, FOXO1, mediates these synaptic changes. FOXO1 overexpression significantly decreased Syn1 and transfection of mutant FOXO1 significantly increased Syn1. Overall, our results suggest that Sirt1 regulates synapses of POMC neurons and does so in a manner that differs from Sirt1’s regulation of AgRP-NPY neuronal synapses. Future work will elucidate the mechanisms and consequences of Sirt1 and FOXO1 regulation of POMC neuron synapses under different nutritional conditions in vitro and in vivo. (1) Cyr, N. E., Steger, J. S., Toorie, A. M., Yang, J. Z., Stuart, R., Nillni, E. A. (2014). Central Sirt1 Regulates Body Weight and Energy Expenditure Along With the POMC-Derived Peptide α-MSH and the Processing Enzyme CPE Production in Diet-Induced Obese Male Rats, Endocrinology, 155(7), 2423–2435. (2) Dietrich, M. O., Antunes, C., Geliang, G., Liu, Z., Borok, E., Nie, Y., . . . Horvath, T. L. (2010). Agrp neurons mediate Sirt1’s action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity. The Journal of Neuroscience, 30(35), 11815–11825.


2004 ◽  
Vol 32 (1) ◽  
pp. 145-153 ◽  
Author(s):  
N Hoggard ◽  
L Hunter ◽  
JS Duncan ◽  
DV Rayner

The central role of the melanocortin system in the regulation of energy balance has been studied in great detail. However, the functions of circulating melanocortins and the roles of their peripheral receptors remain to be elucidated. There is increasing evidence of a peripheral action of melanocortins in the regulation of leptin production by adipocytes. Here we investigate the interaction of alpha-melanocyte stimulating hormone (alpha-MSH) and agouti-related protein (AgRP) in the regulation of leptin secretion from cultured rat adipocytes and examine the changes in circulating alpha-MSH and AgRP in lean and obese rodents after hormonal and energetic challenge. Leptin secretion (measured by ELISA) and gene expression (by real-time quantitative PCR) of differentiated rat adipocytes cultured in vitro were inhibited by the administration of alpha-MSH (EC50=0.24 nM), and this effect was antagonised by antagonists of the melanocortin receptors MC4R and MC3R (AgRP and SHU9119). The presence of MC4R in rat adipocytes (RT-PCR and restriction digest) supports the involvement of this receptor subtype in this interaction. Leptin administered to ob/ob mice in turn increases the release of alpha-MSH into the circulation, suggesting a possible feedback loop between the site of alpha-MSH release and the release of leptin from the adipose tissue. However, the physiological significance of this putative feedback probably depends upon the underlying state of energy balance, since in the fasting state low plasma alpha-MSH is paralleled by low plasma leptin.


2019 ◽  
Vol 3 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Sunil K Panigrahi ◽  
Kana Meece ◽  
Sharon L Wardlaw

Abstract The hypothalamic melanocortin system composed of proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons plays a key role in maintaining energy homeostasis. The POMC-derived peptides, α-MSH and β-EP, have distinct roles in this process. α-MSH inhibits food intake, whereas β-EP, an endogenous opioid, can inhibit POMC neurons and stimulate food intake. A mouse model was used to examine the effects of opioid antagonism with naltrexone (NTX) on Pomc and Agrp gene expression and POMC peptide processing in the hypothalamus in conjunction with changes in energy balance. There were clear stimulatory effects of NTX on hypothalamic Pomc in mice receiving low- and high-fat diets, yet only transient decreases in food intake and body weight gain were noted. The effects on Pomc expression were accompanied by an increase in POMC prohormone levels and a decrease in levels of the processed peptides α-MSH and β-EP. Arcuate expression of the POMC processing enzymes Pcsk1, Pcsk2, and Cpe was not altered by NTX, but expression of Prcp, an enzyme that inactivates α-MSH, increased after NTX exposure. NTX exposure also stimulated hypothalamic Agrp expression, but the effects of NTX on energy balance were not enhanced in Agrp-null mice. Despite clear stimulatory effects of NTX on Pomc expression in the hypothalamus, only modest transient decreases in food intake and body weight were seen. Effects of NTX on POMC processing, and possibly α-MSH inactivation, as well as stimulatory effects on AgRP neurons could mitigate the effects of NTX on energy balance.


Sign in / Sign up

Export Citation Format

Share Document