scholarly journals Faculty Opinions recommendation of DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

Author(s):  
Vitaly Citovsky
PLoS Genetics ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. e1003267 ◽  
Author(s):  
Jochen Gohlke ◽  
Claus-Juergen Scholz ◽  
Susanne Kneitz ◽  
Dana Weber ◽  
Joerg Fuchs ◽  
...  

PLoS Genetics ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. e1006749 ◽  
Author(s):  
M. Jordan Rowley ◽  
M. Hafiz Rothi ◽  
Gudrun Böhmdorfer ◽  
Jan Kuciński ◽  
Andrzej T. Wierzbicki

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1484
Author(s):  
Clémentine Mercé ◽  
Philipp E. Bayer ◽  
Cassandria Tay Fernandez ◽  
Jacqueline Batley ◽  
David Edwards

The methylation of gene promoters is an epigenetic process that can have a major impact on plant phenotypes through its control of gene expression. This phenomenon can be observed as a response to stress, such as drought, cold/heat stress or pathogen infection. The transgenerational heritability of DNA methylation marks could enable breeders to fix beneficial methylation patterns in crops over successive generations. These properties of DNA methylation, its impact on the phenotype and its heritability, could be used to support the accelerated breeding of improved crop varieties. Induced DNA methylation has the potential to complement the existing plant breeding process, supporting the introduction of desirable characteristics in crops within a single generation that persist in its progeny. Therefore, it is important to understand the underlying mechanisms involved in the regulation of gene expression through DNA methylation and to develop methods for precisely modulating methylation patterns for crop improvement. Here we describe the currently available epigenetic editing tools and their advantages and limitations in the domain of crop breeding. Finally, we discuss the biological and legislative limitations currently restricting the development of epigenetic modification as a crop improvement tool.


2018 ◽  
Vol 11 ◽  
pp. 251686571881111 ◽  
Author(s):  
Maud de Dieuleveult ◽  
Benoit Miotto

DNA methylation plays an essential role in the control of gene expression during early stages of development as well as in disease. Although many transcription factors are sensitive to this modification of the DNA, we still do not clearly understand how it contributes to the establishment of proper gene expression patterns. We discuss here the recent findings regarding the biological and molecular function(s) of the transcription factor ZBTB38 that binds methylated DNA sequences in vitro and in cells. We speculate how these findings may help understand the role of DNA methylation and DNA methylation–sensitive transcription factors in mammalian cells.


Classical genetics has revealed the mechanisms for the transmission of genes from generation to generation, but the strategy of the genes in unfolding the developmental programme remains obscure. Epigenetics comprises the study of the mechanisms that impart temporal and spatial control on the activities of all those genes required for the development of a complex organism from the zygote to the adult. Epigenetic changes in gene activity can be studied in relation to DNA methylation in cultured mammalian cells and it is also possible to isolate and characterize mutants with altered DNA methylase activity. Although this experimental system is quite far removed from the epigenetic controls acting during development it does provide the means to clarify the rules governing the silencing of genes by specific DNA methylation and their reactivation by demethylation. This in turn will facilitate studies on the control of gene expression in somatic cells of the developing organism or the adult. The general principles of epigenetic mechanisms can be defined. There are extreme contrasts between instability or switches in gene expression, such as those in stem-line cells, and the stable heritability of a specialized pattern of gene activities. In some situations cell lineages are known to be important, whereas in others coordinated changes in groups of cells have been demonstrated. Control of numbers of cell divisions and the size of organisms, or parts of organisms, is also essential. The epigenetic determination of gene expression can be reversed or reprogrammed in the germ line. The extent to which methylation or demethylation of specific DNA sequences can help explain these basic epigenetic mechanisms is briefly reviewed.


2019 ◽  
Vol 20 (13) ◽  
pp. 3140 ◽  
Author(s):  
Joanna Perła-Kaján ◽  
Hieronim Jakubowski

Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.


Nature ◽  
1981 ◽  
Vol 290 (5805) ◽  
pp. 363-364 ◽  
Author(s):  
Tomas Lindahl

2004 ◽  
Vol 32 (6) ◽  
pp. 913-915 ◽  
Author(s):  
G. Strathdee ◽  
A. Sim ◽  
R. Brown

The role of DNA methylation in the control of mammalian gene expression has been the subject of intensive research in recent years, partly due to the critical role of CpG island methylation in the inactivation of tumour suppressor genes during the development of cancer. However, this research has also helped elucidate the role that DNA methylation plays in normal cells. At present, it is also clear that DNA methylation forms an important part of the normal cell-regulatory processes that govern gene transcription. Methylation, targeted at CpG islands, is an important part of the mechanisms that govern X-chromosome inactivation; it is also essential for the maintenance of imprinted genes and, at least in some cases, is critical in determining the cell-type-specific expression patterns of genes. Study of these examples will be important in identifying the mechanisms that control targeting of DNA methylation and how these processes are disrupted during disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document