scholarly journals Faculty Opinions recommendation of The role of small RNAs in vegetative shoot development.

Author(s):  
Leslie Sieburth
2016 ◽  
Vol 29 ◽  
pp. 64-72 ◽  
Author(s):  
Jim P Fouracre ◽  
R Scott Poethig

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 113 ◽  
Author(s):  
Stephanie Maia Acuña ◽  
Lucile Maria Floeter-Winter ◽  
Sandra Marcia Muxel

An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen–host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.


2016 ◽  
Vol 43 (2) ◽  
pp. 105 ◽  
Author(s):  
Lu Wang ◽  
Yong-Ling Ruan

Roots and shoots are distantly located but functionally interdependent. The growth and development of these two organ systems compete for energy and nutrient resource, and yet, they keep a dynamic balance with each other for growth and development. The success of such a relationship depends on efficient root-shoot communication. Aside from the well-known signalling processes mediated by hormones such as auxin and cytokinin, sugars have recently been shown to act as a rapid signal to co-ordinate root and shoot development in response to endogenous and exogenous clues, in parallel to their function as carbon and energy resources for biomass production. New findings from studies on vascular fluids have provided molecular insights into the role of sugars in long-distance communications between shoot and root. In this review, we discussed phloem- and xylem- translocation of sugars and the impacts of sugar allocation and signalling on balancing root–shoot development. Also, we have taken the shoot–root carbon–nitrogen allocation as an example to illustrate the communication between the two organs through multi-layer root–shoot–root signalling circuits, comprising sugar, nitrogen, cytokinin, auxin and vascular small peptide signals.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0177612 ◽  
Author(s):  
Md. Arifuzzaman ◽  
Süleyman Günal ◽  
Annemarie Bungartz ◽  
Shumaila Muzammil ◽  
Nazanin P. Afsharyan ◽  
...  

HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1600-1609 ◽  
Author(s):  
Ockert P.J. Stander ◽  
Graham H. Barry ◽  
Paul J.R. Cronjé

The significance of macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) in leaves was studied in relation with their possible roles in alternate bearing of ‘Nadorcott’ mandarin (Citrus reticulata) trees over a period of three seasons. Fruit load (“on,” a heavy fruit load, vs. “off,” a light fruit load) affected the leaf macronutrient concentrations, and the amount of macronutrients removed through the harvest of fruit, i.e., the crop removal factor (g·kg−1), was consistent in both seasons. The crop removal factors were higher for each macronutrient in “off” trees—harvest of 1 kg fruit removed ≈2.3 g·kg−1 N, 0.3 g·kg−1 P, 3.1 g·kg−1 K, 1.0 g·kg−1 Ca, and 0.4 g·kg−1 Mg, compared with 1.3 g·kg−1 N, 0.2 g·kg−1 P, 1.7 g·kg−1 K, 0.6 g·kg−1 Ca, and 0.2 g·kg−1 Mg in “on” trees. Fruit load per tree (kg/tree) of 84, 110, and 52 kg/tree in “on” trees, however, removed ≈217 g/tree N, 28 g/tree P, 296 g/tree K, 100 g/tree Ca, and 35 g/tree Mg, which was 1.5–6 times more than that of fruit loads of 14, 71, and 16 kg/tree in “off” trees. In “off” trees, N, P, and K, and in “on” trees, Ca accumulated in leaves to between 20% and 30% higher concentrations in season 1, but the higher macronutrient status did not manifest in or consistently correlate with intensity of summer vegetative shoot development in the current season, or intensity of flowering in the next season, the two main determinants of fruit load in ‘Nadorcott’ mandarin. Apart from some anomalies, the concentrations of macronutrients in leaves were unaffected by de-fruiting and foliar spray applications of N and K to “on” trees, and showed no consistent relationship with treatment effects on parameters of vegetative shoot development and flowering. Leaf macronutrients in alternate bearing ‘Nadorcott’ mandarin trees, fertilized according to grower standard practice, are not related to differences in flowering and vegetative shoot development, and appear to be a consequence of fruit load and not a determinant thereof.


2020 ◽  
Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Kristine B. Arnvig

ABSTRACTAlmost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of post-transcriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA, F6, and show it to be dependent on SigF for expression and significantly induced during in vitro starvation and in a mouse model of infection. However, we found no evidence of attenuation of a ΔF6 strain within the first 20 weeks of infection. A further exploration of F6 using in vitro models of infection suggests a role for F6 as a highly specific regulator of the heat shock repressor, HrcA. Our results point towards a role for F6 during periods of low metabolic activity similar to cold shock and associated with nutrient starvation such as that found in human granulomas in later stages of infection.


Sign in / Sign up

Export Citation Format

Share Document