scholarly journals Shoot–root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation

2016 ◽  
Vol 43 (2) ◽  
pp. 105 ◽  
Author(s):  
Lu Wang ◽  
Yong-Ling Ruan

Roots and shoots are distantly located but functionally interdependent. The growth and development of these two organ systems compete for energy and nutrient resource, and yet, they keep a dynamic balance with each other for growth and development. The success of such a relationship depends on efficient root-shoot communication. Aside from the well-known signalling processes mediated by hormones such as auxin and cytokinin, sugars have recently been shown to act as a rapid signal to co-ordinate root and shoot development in response to endogenous and exogenous clues, in parallel to their function as carbon and energy resources for biomass production. New findings from studies on vascular fluids have provided molecular insights into the role of sugars in long-distance communications between shoot and root. In this review, we discussed phloem- and xylem- translocation of sugars and the impacts of sugar allocation and signalling on balancing root–shoot development. Also, we have taken the shoot–root carbon–nitrogen allocation as an example to illustrate the communication between the two organs through multi-layer root–shoot–root signalling circuits, comprising sugar, nitrogen, cytokinin, auxin and vascular small peptide signals.

2016 ◽  
Vol 310 (3) ◽  
pp. H326-H336 ◽  
Author(s):  
I. Mark Olfert ◽  
Oliver Baum ◽  
Ylva Hellsten ◽  
Stuart Egginton

The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis.


Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


2014 ◽  
Vol 4 (2) ◽  
pp. 106-112
Author(s):  
Anita Shrivastava ◽  
Andrea Burianova

This study aimed to explore the relationships between attachment styles, proximity, and relational satisfaction. This was achieved by assessing a distinct type of long distance romantic relationship of flying crews, compared with proximal (non-flying crew) romantic relationships. The responses of 139 expatriate professionals revealed significant associations between proximity and anxious and avoidant attachment dimensions. The role of the avoidant dimension in comparison with that of the anxious dimension was found to be a significant predictor of relational satisfaction. This study contributes significantly toward addressing the role of proximity and attachment in relational satisfaction in a new context of geographic separation.


2016 ◽  
Vol 3 (2) ◽  
pp. 56-62
Author(s):  
R. Iskra ◽  
V. Vlizlo ◽  
R. Fedoruk

The results of our studies and the data of modern literature regarding the biological role of Cr(III) compounds in conditions of their application in the nutrition for pigs and cattle are discussed. The metabolic impact of Cr(III), coming from different sources – mineral and organic compounds, obtained by chemical synthesis or a nanotechnological method (chromium citrate), as well as in the form of biocomplexes from the cultural medium of Saccharomyces cerevisiae yeasts was analyzed. The metabolic connection between the impact of Cr(III) and the biosynthesis of some hormones – insulin, cortisol – as well as the sensitivity of some tissues and organs to the effect of chromium compounds was studied. A considerable part of the review material was dedicated to the metabolic effect of Cr(III) compounds on the reproductive function of pigs and cattle and their impact on the viability of the offspring and gametes of animals. The data about the stimulating effect of Cr(III) on the growth and development of the organism of piglets and calves, meat and milk performance of these species of animals are discussed. The relevance of dosing Cr(III) in the nutrition of pigs and cattle is highlighted.


Author(s):  
Miriam Michel ◽  
Manuela Zlamy ◽  
Andreas Entenmann ◽  
Karin Pichler ◽  
Sabine Scholl-Bürgi ◽  
...  

: In patients having undergone the Fontan operation, besides the well discussed changes in the cardiac, pulmonary and gastrointestinal system, alterations of further organ systems including the hematologic, immunologic, endocrinological and metabolic are reported. As a medical adjunct to Fontan surgery, the systematic study of the central role of the liver as a metabolizing and synthesizing organ should allow for a better understanding of the pathomechanism underlying the typical problems in Fontan patients, and in this context, the profiling of endocrinological and metabolic patterns might offer a tool for the optimization of Fontan follow-up, targeted monitoring and specific adjunct treatment.


2020 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
Mulugeta Mulat ◽  
Raksha Anand ◽  
Fazlurrahman Khan

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.


This interdisciplinary volume presents nineteen chapters by Roman historians and archaeologists, discussing trade in the Roman Empire in the period c.100 BC to AD 350, and in particular the role of the Roman state, in shaping the institutional framework for trade within and outside the Empire, in taxing that trade, and in intervening in the markets to ensure the supply of particular commodities, especially for the city of Rome and for the army. The chapters in this volume address facets of the subject on the basis of widely different sources of evidence—historical, papyrological, and archaeological—and are grouped in three sections: institutional factors (taxation, legal structures, market regulation, financial institutions); evidence for long-distance trade within the Empire, in wood, stone, glass, and pottery; and trade beyond the frontiers, with the East (as far as China), India, Arabia, and the Red Sea, and the Sahara. Rome’s external trade with realms to the east emerges as being of particular significance to the fisc. But in the eastern part of the Empire at least, the state appears, in collaboration with the elite holders of wealth, to have adapted the mechanisms of taxation, both direct and indirect, to support its need for revenue. On the other hand, the price of that collaboration, which was in effect a fiscal partnership, in slightly different forms in East and West, in the longer term fundamentally changed the political character of the Empire.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Reymundo Lozano ◽  
Catherine Gbekie ◽  
Paige M. Siper ◽  
Shubhika Srivastava ◽  
Jeffrey M. Saland ◽  
...  

AbstractFOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.


Sign in / Sign up

Export Citation Format

Share Document