scholarly journals First Principles Study on the Structural, Elastic, Electronic and Optical Properties of Cubic ‘Half-Heusler’ Alloy RuVAs Under Pressure

The pressure effect (0 to 40 GPa) on the structural, elastic, electronic, and optical properties of half-metallic compound RuVAs has been investigated employing the DFT based on the first-principles method. The CASTEP computer code is used for this investigation. The calculated lattice parameter show slide deviation from the synthesized and other theoretical data. The normalized lattice parameter and volume are decreased with increasing pressure. The zero pressure elastic constants and also the pressure-dependent elastic constants are positive up to 40 GPa and satisfy the Born stability condition which ensured that the compound RuVAs is stable in nature. At zero pressure, the electronic band gap of 0.159 eV is observed from the band structure calculations which ensured the semimetallic nature of RuVAs. No band gap is observed in the electronic band structure at 40 GPa which indicates the occurrence of phase transition of compound RuVAs at this pressure. We have calculated the value of bulk modulus B, shear modulus G, Young’s modulus E, Pugh ratio B/G, Poisson’s ratio ν and anisotropy factor A of this compound by using the Voigt-Reuss-Hill (VRH) averaging scheme under pressure. The bulk modulus shows a linear response to pressure so that the hardness of this material is increased with increasing pressure. Furthermore, the optical properties such as reflectivity, absorptivity, conductivity, dielectric constant, refractive index, and loss function of RuVAs were evaluated and discussed under pressure up to 40 GPa.

2016 ◽  
Vol 71 (9) ◽  
pp. 783-796 ◽  
Author(s):  
I. Hattabi ◽  
A. Abdiche ◽  
R. Moussa ◽  
R. Riane ◽  
K. Hadji ◽  
...  

AbstractIn this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InNxP1–x in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange–correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke–Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InNxP1–x compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Faizan ◽  
K. C. Bhamu ◽  
Ghulam Murtaza ◽  
Xin He ◽  
Neeraj Kulhari ◽  
...  

AbstractThe highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 876 ◽  
Author(s):  
Qi Qian ◽  
Lei Peng ◽  
Yu Cui ◽  
Liping Sun ◽  
Jinyan Du ◽  
...  

We systematically study, by using first-principles calculations, stabilities, electronic properties, and optical properties of GexSn1-xSe alloy made of SnSe and GeSe monolayers with different Ge concentrations x = 0.0, 0.25, 0.5, 0.75, and 1.0. Our results show that the critical solubility temperature of the alloy is around 580 K. With the increase of Ge concentration, band gap of the alloy increases nonlinearly and ranges from 0.92 to 1.13 eV at the PBE level and 1.39 to 1.59 eV at the HSE06 level. When the Ge concentration x is more than 0.5, the alloy changes into a direct bandgap semiconductor; the band gap ranges from 1.06 to 1.13 eV at the PBE level and 1.50 to 1.59 eV at the HSE06 level, which falls within the range of the optimum band gap for solar cells. Further optical calculations verify that, through alloying, the optical properties can be improved by subtle controlling the compositions. Since GexSn1-xSe alloys with different compositions have been successfully fabricated in experiments, we hope these insights will contribute to the future application in optoelectronics.


Author(s):  
Rashid Khan ◽  
Kaleem Ur Rahman ◽  
Qingmin Zhang ◽  
Altaf Ur Rahman ◽  
Sikander Azam ◽  
...  

Abstract Using first-principles calculations, the effects of Yb$^{2+}$ substitutional doping on structural, electronic, and optical properties of a series of perovskite compounds CsCaX$_3$ (X: Cl, Br, I), have been investigated. We employed generalized gradient approximation (GGA) and HSE hybrid functional to study the electronic and optical properties. A series of pristine CsCaX$_3$(X: Cl, Br, I) is characterized as a non-magnetic insulator with indirect bandgap perovskite materials. These phosphor materials are suitable candidates for doping with lanthanide series elements to tune their electronic bandgaps according to our requirements because of their wide bandgaps. The calculated electronic bandgaps of CsCaX$_3$ (X: Cl, Br, I) are 3.7 eV(GGA) and 4.5 eV (HSE) for CsCaI$_3$, 4.5 eV (GGA) and 5.3 eV (HSE) for CsCaBr$_3$, and 5.4 eV (GGA) and 6.4 eV (HSE) for CsCaCl$_3$. According to formation energies, the Yb$^{2+}$ doped at the Ca-site is thermodynamically more stable as compared to all possible atomic sites. The electronic band structures show that the Yb$^{2+}$ doping induces defective states within the bandgaps of pristine CsCaX$_3$. As a result, the Yb$^{2+}$ doped CsCaX$_3$ (X: Cl, Br, I) become the direct bandgap semiconductors. The defective states above the VBM are produced due to the $f$-orbital of the Yb atom. The impurity states near the CBM are induced due to the major contribution of $d$-orbital of the Yb atom and the minor contribution of $s$-orbital of the Cs atom. The real and imaginary parts of the dielectric function, optical reflectivity, electron energy loss spectrum, extinction coefficient, and refractive index of pristine and Yb$^{2+}$ doped CsCaX$_3$ were studied. The optical dispersion results of dielectric susceptibility closely match their relevant electronic structure and align with previously reported theoretical and experimental data. We conclude that the Yb$^{2+}$ doped CsCaX$_3$ (X: Cl, Br, I) are appealing candidates for optoelectronic devices.


RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3877-3883 ◽  
Author(s):  
Aaron Mei ◽  
Xuan Luo

The crystallized amino acid γ-glycine is a large band gap insulator that shows promise in the fields of photonics and non-linear optics.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 342 ◽  
Author(s):  
Hamid M. Ghaithan ◽  
Zeyad A. Alahmed ◽  
Andreas Lyras ◽  
Saif M. H. Qaid ◽  
Abdullah S. Aldwayyan

The structural, electronic, and optical properties of inorganic CsPb(I1−xBrx)3 compounds were investigated using the full-potential linear augmented-plane wave (FP-LAPW) scheme with a generalized gradient approximation (GGA). Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and modified Becke–Johnson GGA (mBJ-GGA) potentials were used to study the electronic and optical properties. The band gaps calculated using the mBJ-GGA method gave the best agreement with experimentally reported values. CsPb(I1−xBrx)3 compounds were wide and direct band gap semiconductors, with a band gap located at the M point. The spectral weight (SW) approach was used to unfold the band structure. By substituting iodide with bromide, an increase in the band gap energy (Eg) values of 0.30 and 0.55 eV, using PBE-GGA and mBJ-GGA potentials, respectively, was observed, whereas the optical property parameters, which were also investigated, demonstrated the reverse effect. The high absorption spectra in the ultraviolet−visible energy range demonstrated that CsPb(I1−xBrx)3 perovskite could be used in optical and optoelectronic devices by partly replacing iodide with bromide.


2004 ◽  
Vol 829 ◽  
Author(s):  
G. Cappellini ◽  
G. Satta ◽  
M. Palummo ◽  
G. Onida

ABSTRACTWe present first-principles calculated electronic and optical properties of some SiGe alloys. The ground-state, electronic excitations and optical properties have been calculated with Ge and Si atoms arranged in different ways among the sites of a diamond-type lattice. For the ground state a DFT-LDA scheme and for the electronic excitations a DFT-GW approach have been respectively used. For the optical properties the DFT-LDA-RPA scheme has been applied for alloys going in composition from Si(100%) to Ge(100%): obtained results have been compared with existing experimental and theoretical data. For the noticeable Si(50%)Ge(50%) alloy also two-particle effects have been evaluated using the Bethe-Salpeter equation.


2009 ◽  
Vol 113 (19) ◽  
pp. 8460-8464 ◽  
Author(s):  
Luyan Li ◽  
Weihua Wang ◽  
Hui Liu ◽  
Xindian Liu ◽  
Qinggong Song ◽  
...  

2017 ◽  
Vol 268 ◽  
pp. 92-96
Author(s):  
R.M. Nor ◽  
S.N.M. Halim ◽  
Mohamad Fariz Mohamad Taib ◽  
M. Kamil Abd-Rahman

The structural, electronic, and optical properties of an amorphous SiO2 (a-SiO2) model is investigated by using first-principles calculation. Most research works used beta-cristobalite glass structure as a reference to amorphous silica structure. However, only the electronic properties were been presented without any link towards the optical properties. Here, we demonstrate simultaneous electronic and optical properties, which closely matched to a-SiO2 properties by generating small sample of amorphous quartz glass. Using the Rietveld refinement, amorphous silica structure was generated and optimized using density functional theory in CASTEP computer code. A thorough analysis of the amorphous quartz structure obtained from different thermal treatment was carried out. The structure of amorphous silica was validated with previous theoretical and experimental works. It is shown that small sample of amorphous silica have similar structural, electronic and optical properties with a larger sample. The calculated optical and electronic properties from the a-SiO2 glass match closely to previous theoretical and experimental data from others. The a-SiO2 band gap of 5.853 eV is found to be smaller than the experimental value of ~9 eV. This is due to the underestimation and assumption made in DFT. However, the band gap value is in good agreement with the other theoretical works. Apart from the absorption edge at around 6.5 eV, the refractive index is 1.5 at 0eV. Therefore, this atomic structure can served as a reference model for future research works on amorphous structures.


Author(s):  
L. S. Taura ◽  
Isah Abdulmalik ◽  
A. S. Gidado ◽  
Abdullahi Lawal

Stanene is a 2D hexagonal layer of tin with exceptional electronic and optical properties. However, the semiconductor applications of stanene are limited due to its zero band-gap. However, doping stanene could lead to a band gap opening, which could be a promising material for electronic and optical applications. In this work, optimized structure, electronic band structure, real and imaginary parts of the frequency-dependent dielectric function, electron loss function, and refractive index of stanene substitutionally doped with alkaline earth metal (beryllium) were analyzed using density functional theory (DFT) calculations as implemented in the quantum espresso and yambo suites. A pure stanene has a zero band gap energy, but with the inclusion of spin-orbit coupling in the electronic calculation of pure stanene, the band-gap is observed to open up by 0.1eV. Doping stanene with beryllium opens the band-gap and shifts the Dirac cone from the Fermi level, the band gap opens by 0.25eV, 0.55eV, and 0.8eV when the concentration of Beryllium is 12.5%, 25%, and 37.5% respectively. The Dirac cone vanished when the concentration of the dopant was increased to 50%.  The Fermi level is shifted towards the valence band edge indicating a p-type material. The material absorption shows that SnBe absorption ranges in the visible to the ultraviolet region, The refractive index in stanene doped beryllium (SnBe) was found to be higher than that of pristine stanene, the highest refractive index was 9.2 at SnBe25%. In a nutshell, the results indicate that stanene can be a good material for electronic and optical applications if doped with beryllium.


Sign in / Sign up

Export Citation Format

Share Document