Desenvolvimento de um processo de laminação de material compósito com fibra de carbono e matriz de resina epóxi da asa de uma aeronave / Development of a lamination process of composite material with carbon fiber and epoxy resin matrix from the wing of an aircraft

2020 ◽  
Vol 4 (6) ◽  
pp. 3772-3791
Author(s):  
Alexandre Mendes de Castro ◽  
Vagner Grison ◽  
Alexandre Luís Gasparin
2020 ◽  
pp. 095400832095739
Author(s):  
Zibao Jiao ◽  
Zhengjun Yao ◽  
Jintang Zhou ◽  
Pengshu Yi ◽  
Chuanjun Lu

Based on the surface analysis of carbon fiber, an epoxy resin matrix with good wettability to carbon fibers had been developed and studied, and the influence of winding tension on the interface and mechanical properties of the composite were studied. The surface morphology of carbon fiber and the active functional groups of sizing agent were analyzed. In order to form a good interface combination, the wettability between carbon fibers and epoxy resin matrix was characterized by dynamic contact angle. The winding tension played an important role in the mechanical properties of composites. Therefore, a kind of carbon fiber reinforced composites, Naval Ordnance Laboratory (NOL) rings were fabricated using different winding tensions. Particularly, when the winding tension was 30 N, the interfacial bonding between carbon fibers and resin matrix was the most compact and firm. The tensile strength and interlaminar shear strength (ILSS) of NOL rings reached high values, 2712 MPa and 75 MPa, respectively.


2006 ◽  
Vol 11-12 ◽  
pp. 517-520 ◽  
Author(s):  
Dong Lin Zhao ◽  
Ren Hai Qiao ◽  
Cheng Zhong Wang ◽  
Zeng Min Shen

The carbon nanotubes (CNTs) were prepared by catalytic decompose of benzene using floating transition method at 1100-1200°C. Benzene was used as carbon source and ferrocene as catalyst with thiophene. The carbon nanotubes are straight with diameter 20-50 nm, internal diameter 10-30 nm and length 50-1000 μm. The carbon nanotube and continuous carbon fiber (T300) reinforced unidirectional epoxy resin matrix composites was fabricated. The volune fraction of continuous carbon fiber (first filler) in the composites without second filler (carbon nanotube) was 60%. The mechanical properties of the composites were investigated under bending, shear, and impact loading. The flexural strength and modulus of the composites increased firstly and then decreased with the increasing of carbon nanotube contents in epoxy resin matrix. The flexural strength of the composites reached the maximum value of 1780 MPa when the weight percent of carbon nanotube in epoxy resin matrix was 3%.


2020 ◽  
Vol 26 ◽  
pp. 2805-2810 ◽  
Author(s):  
Avi Raj Singh Manral ◽  
Narendra Gariya ◽  
Gagan Bansal ◽  
Haresh Pal Singh ◽  
Ashish Rawat

2009 ◽  
Vol 154 ◽  
pp. 35-40 ◽  
Author(s):  
Jerzy Kaleta ◽  
Daniel Lewandowski ◽  
Rafał Mech ◽  
Paweł Gąsior

In this work the methodology of determining mechanical and magnetomechanical properties (mainly magnetostriction) of original composite material on epoxy resin matrix and powdered Giant Magnetostrictive Material (Terfenol-D) has been presented. Researches were carried out in order to differentiate properties of the GMM composite with two different volume fraction of Terfenol-D powder (35% and 45%) in comparison with bulk Terfenol-D. Results show that composites magnetostriction highly depends on volume fraction of Terfenol-D powder, and it is few times lower than in monolithic material. Moreover a possible ways of application were indicated.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2058 ◽  
Author(s):  
George Soupionis ◽  
Pantelitsa Georgiou ◽  
Loukas Zoumpoulakis

The present paper deals with the use of polymeric matrix composite materials reinforced with carbon fiber as concrete shear reinforcement materials. Accordingly, cement specimens were manufactured and coated with various types of carbon fabrics and epoxy resin in liquid and solid form (paste). Additionally, composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were manufactured. In all the specimens, the mechanical properties were estimated; the cement samples coated with composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were tested for compressive strength, while the other specimens were tested for shear and bending strength. The specimens were subjected to artificial aging through heat treatment for 8, 12 and 16 days. During the process of artificial aging, the temperature in the chamber reached the range of 65–75 °C. These composite materials exhibited high mechanical properties combined with adaptability. Both an external deterioration of the materials as well as a reduction in mechanical properties during their artificial aging heat treatment were observed. This was shown in the specimens that were not subjected to artificial aging, with an applied compression strength of 74 MPa, and after the artificial aging, there was a decrease of ~7%, with the compression strength being reduced to 68 MPa.


2020 ◽  
Vol 26 ◽  
pp. 2558-2563 ◽  
Author(s):  
Avi Raj Singh Manral ◽  
Narendra Gariya ◽  
Gagan Bansal ◽  
Harsh Pratap Singh ◽  
Pankaj Negi

Sign in / Sign up

Export Citation Format

Share Document