scholarly journals Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass over Mountainous Areas

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenjian Ni ◽  
Zhiyu Zhang ◽  
Guoqing Sun

Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.

2020 ◽  
Vol 12 (11) ◽  
pp. 1824 ◽  
Author(s):  
Lana L. Narine ◽  
Sorin C. Popescu ◽  
Lonesome Malambo

National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mission is primarily aimed at capturing ice measurements, ICESat-2 also provides data over vegetated areas, offering the capability to gain insights into ecosystem structure and the potential to contribute to the sustainable management of forests. This study involved an examination of the utility of ICESat-2 for estimating forest aboveground biomass (AGB). The objectives of this study were to: (1) investigate the use of canopy metrics for estimating AGB, using data extracted from an ICESat-2 transect over forests in south-east Texas; (2) compare the accuracy for estimating AGB using data from the strong beam and weak beam; and (3) upscale predicted AGB estimates using variables from Landsat multispectral imagery and land cover and canopy cover maps, to generate a 30 m spatial resolution AGB map. Methods previously developed with simulated ICESat-2 data over Sam Houston National Forest (SHNF) in southeast Texas were adapted using actual data from an adjacent ICESat-2 transect over similar vegetation conditions. Custom noise filtering and photon classification algorithms were applied to ICESat-2’s geolocated photon data (ATL03) for one beam pair, consisting of a strong and weak beam, and canopy height estimates were retrieved. Canopy height parameters were extracted from 100 m segments in the along-track direction for estimating AGB, using regression analysis. ICESat-2-derived AGB estimates were then extrapolated to develop a 30 m AGB map for the study area, using vegetation indices from Landsat 8 Operational Land Imager (OLI), National Land Cover Database (NLCD) landcover and canopy cover, with random forests (RF). The AGB estimation models used few canopy parameters and suggest the possibility for applying well-developed methods for modeling AGB with airborne light detection and ranging (lidar) data, using processed ICESat-2 data. The final regression model achieved a R2 and root mean square error (RMSE) value of 0.62 and 24.63 Mg/ha for estimating AGB and RF model evaluation with a separate test set yielded a R2 of 0.58 and RMSE of 23.89 Mg/ha. Findings provide an initial look at the ability of ICESat-2 to estimate AGB and serve as a basis for further upscaling efforts.


2021 ◽  
Vol 13 (15) ◽  
pp. 2892
Author(s):  
Zhongbing Chang ◽  
Sanaa Hobeichi ◽  
Ying-Ping Wang ◽  
Xuli Tang ◽  
Gab Abramowitz ◽  
...  

Mapping the spatial variation of forest aboveground biomass (AGB) at the national or regional scale is important for estimating carbon emissions and removals and contributing to global stocktake and balancing the carbon budget. Recently, several gridded forest AGB products have been produced for China by integrating remote sensing data and field measurements, yet significant discrepancies remain among these products in their estimated AGB carbon, varying from 5.04 to 9.81 Pg C. To reduce this uncertainty, here, we first compiled independent, high-quality field measurements of AGB using a systematic and consistent protocol across China from 2011 to 2015. We applied two different approaches, an optimal weighting technique (WT) and a random forest regression method (RF), to develop two observationally constrained hybrid forest AGB products in China by integrating five existing AGB products. The WT method uses a linear combination of the five existing AGB products with weightings that minimize biases with respect to the field measurements, and the RF method uses decision trees to predict a hybrid AGB map by minimizing the bias and variance with respect to the field measurements. The forest AGB stock in China was 7.73 Pg C for the WT estimates and 8.13 Pg C for the RF estimates. Evaluation with the field measurements showed that the two hybrid AGB products had a lower RMSE (29.6 and 24.3 Mg/ha) and bias (−4.6 and −3.8 Mg/ha) than all five participating AGB datasets. Our study demonstrated both the WT and RF methods can be used to harmonize existing AGB maps with field measurements to improve the spatial variability and reduce the uncertainty of carbon stocks. The new spatial AGB maps of China can be used to improve estimates of carbon emissions and removals at the national and subnational scales.


2021 ◽  
Vol 13 (4) ◽  
pp. 581 ◽  
Author(s):  
Yuanyuan Fu ◽  
Guijun Yang ◽  
Xiaoyu Song ◽  
Zhenhong Li ◽  
Xingang Xu ◽  
...  

Rapid and accurate crop aboveground biomass estimation is beneficial for high-throughput phenotyping and site-specific field management. This study explored the utility of high-definition digital images acquired by a low-flying unmanned aerial vehicle (UAV) and ground-based hyperspectral data for improved estimates of winter wheat biomass. To extract fine textures for characterizing the variations in winter wheat canopy structure during growing seasons, we proposed a multiscale texture extraction method (Multiscale_Gabor_GLCM) that took advantages of multiscale Gabor transformation and gray-level co-occurrency matrix (GLCM) analysis. Narrowband normalized difference vegetation indices (NDVIs) involving all possible two-band combinations and continuum removal of red-edge spectra (SpeCR) were also extracted for biomass estimation. Subsequently, non-parametric linear (i.e., partial least squares regression, PLSR) and nonlinear regression (i.e., least squares support vector machine, LSSVM) analyses were conducted using the extracted spectral features, multiscale textural features and combinations thereof. The visualization technique of LSSVM was utilized to select the multiscale textures that contributed most to the biomass estimation for the first time. Compared with the best-performing NDVI (1193, 1222 nm), the SpeCR yielded higher coefficient of determination (R2), lower root mean square error (RMSE), and lower mean absolute error (MAE) for winter wheat biomass estimation and significantly alleviated the saturation problem after biomass exceeded 800 g/m2. The predictive performance of the PLSR and LSSVM regression models based on SpeCR decreased with increasing bandwidths, especially at bandwidths larger than 11 nm. Both the PLSR and LSSVM regression models based on the multiscale textures produced higher accuracies than those based on the single-scale GLCM-based textures. According to the evaluation of variable importance, the texture metrics “Mean” from different scales were determined as the most influential to winter wheat biomass. Using just 10 multiscale textures largely improved predictive performance over using all textures and achieved an accuracy comparable with using SpeCR. The LSSVM regression model based on the combination of the selected multiscale textures, and SpeCR with a bandwidth of 9 nm produced the highest estimation accuracy with R2val = 0.87, RMSEval = 119.76 g/m2, and MAEval = 91.61 g/m2. However, the combination did not significantly improve the estimation accuracy, compared to the use of SpeCR or multiscale textures only. The accuracy of the biomass predicted by the LSSVM regression models was higher than the results of the PLSR models, which demonstrated LSSVM was a potential candidate to characterize winter wheat biomass during multiple growth stages. The study suggests that multiscale textures derived from high-definition UAV-based digital images are competitive with hyperspectral features in predicting winter wheat biomass.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Adeel Ahmad ◽  
Hammad Gilani ◽  
Sajid Rashid Ahmad

This paper provides a comprehensive literature review on forest aboveground biomass (AGB) estimation and mapping through high-resolution optical satellite imagery (≤5 m spatial resolution). Based on the literature review, 44 peer-reviewed journal articles were published in 15 years (2004–2019). Twenty-one studies were conducted across six continents in Asia, eight in North America and Africa, five in South America, and four in Europe. This review article gives a glance at the published methodologies for AGB prediction modeling and validation. The literature review suggested that, along with the integration of other sensors, QuickBird, WorldView-2, and IKONOS satellite images were most widely used for AGB estimations, with higher estimation accuracies. All studies were grouped into six satellite-derived independent variables, including tree crown, image textures, tree shadow fraction, canopy height, vegetation indices, and multiple variables. Using these satellite-derived independent variables, most of the studies used linear regression (41%), while 30% used linear (multiple regression and 18% used non-linear (machine learning) regression, while very few (11%) studies used non-linear (multiple and exponential) regression for estimating AGB. In the context of global forest AGB estimations and monitoring, the advantages, strengths, and limitations were discussed to achieve better accuracy and transparency towards the performance-based payment mechanism of the REDD+ program. Apart from technical limitations, we realized that very few studies talked about real-time monitoring of AGB or quantifying AGB change, a dimension that needs exploration.


2021 ◽  
Vol 13 (15) ◽  
pp. 2962
Author(s):  
Jingyi Wang ◽  
Huaqiang Du ◽  
Xuejian Li ◽  
Fangjie Mao ◽  
Meng Zhang ◽  
...  

Bamboo forests are widespread in subtropical areas and are well known for their rapid growth and great carbon sequestration ability. To recognize the potential roles and functions of bamboo forests in regional ecosystems, forest aboveground biomass (AGB)—which is closely related to forest productivity, the forest carbon cycle, and, in particular, carbon sinks in forest ecosystems—is calculated and applied as an indicator. Among the existing studies considering AGB estimation, linear or nonlinear regression models are the most frequently used; however, these methods do not take the influence of spatial heterogeneity into consideration. A geographically weighted regression (GWR) model, as a spatial local model, can solve this problem to a certain extent. Based on Landsat 8 OLI images, we use the Random Forest (RF) method to screen six variables, including TM457, TM543, B7, NDWI, NDVI, and W7B6VAR. Then, we build the GWR model to estimate the bamboo forest AGB, and the results are compared with those of the cokriging (COK) and orthogonal least squares (OLS) models. The results show the following: (1) The GWR model had high precision and strong prediction ability. The prediction accuracy (R2) of the GWR model was 0.74, 9%, and 16% higher than the COK and OLS models, respectively, while the error (RMSE) was 7% and 12% lower than the errors of the COK and OLS models, respectively. (2) The bamboo forest AGB estimated by the GWR model in Zhejiang Province had a relatively dense spatial distribution in the northwestern, southwestern, and northeastern areas. This is in line with the actual bamboo forest AGB distribution in Zhejiang Province, indicating the potential practical value of our study. (3) The optimal bandwidth of the GWR model was 156 m. By calculating the variable parameters at different positions in the bandwidth, close attention is given to the local variation law in the estimation of the results in order to reduce the model error.


Author(s):  
Yanqiu Xing ◽  
Sai Qiu ◽  
Jianhua Ding ◽  
Jing Tian

Estimation of forest aboveground biomass (AGB) is a critical challenge for understanding the global carbon cycle because it dominates the dynamics of the terrestrial carbon cycle. Light Detection and Ranging (LiDAR) system has a unique capability for estimating accurately forest canopy height, which has a direct relationship and can provide better understanding to the forest AGB. The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) is the first polarorbiting LiDAR instrument for global observations of Earth, and it has been widely used for extracting forest AGB with footprints of nominally 70&thinsp;m in diameter on the earth's surface. However, the GLAS footprints are discrete geographically, and thus it has been restricted to produce the regional full coverage of forest AGB. To overcome the limit of discontinuity, the Hyper Spectral Imager (HSI) of HJ-1A with 115 bands was combined with GLAS waveforms to predict the regional forest AGB in the study. Corresponding with the field investigation in Wangqing of Changbai Mountain, China, the GLAS waveform metrics were derived and employed to establish the AGB model, which was used further for estimating the AGB within GLAS footprints. For HSI imagery, the Minimum Noise Fraction (MNF) method was used to decrease noise and reduce the dimensionality of spectral bands, and consequently the first three of MNF were able to offer almost 98% spectral information and qualified to regress with the GLAS estimated AGB. Afterwards, the support vector regression (SVR) method was employed in the study to establish the relationship between GLAS estimated AGB and three of HSI MNF (i.e. <i>MNF1</i>, <i>MNF2</i> and <i>MNF3</i>), and accordingly the full covered regional forest AGB map was produced. The results showed that the adj.R<sup>2</sup> and RMSE of SVR-AGB models were 0.75 and 4.68&thinsp;t&thinsp;hm<sup>&minus;2</sup> for broadleaf forests, 0.73 and 5.39&thinsp;t&thinsp;hm<sup>&minus;2</sup> for coniferous forests and 0.71 and 6.15&thinsp;t&thinsp;hm<sup>&minus;2</sup> for mixed forests respectively. The full covered regional forest AGB map of the study area had 0.62 of accuracy and 11.11&thinsp;t&thinsp;hm<sup>&minus;2</sup> of RMSE. The study demonstrated that it holds great potential to achieve the full covered regional forest AGB distribution with higher accuracy by combing LiDAR data and hyperspectral imageries.


Author(s):  
Sara Silva ◽  
Vijay Ingalalli ◽  
Susana Vinga ◽  
João M. B. Carreiras ◽  
Joana B. Melo ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 2287 ◽  
Author(s):  
Kumar ◽  
Garg ◽  
Govil ◽  
Kushwaha

Polarimetric synthetic aperture radar (PolSAR) remote sensing has been widely used for forest mapping and monitoring. PolSAR data has the capability to provide scattering information that is contributed by different scatterers within a single SAR resolution cell. A methodology for a PolSAR-based extended water cloud model (EWCM) has been proposed and evaluated in this study. Fully polarimetric phased array type L-band synthetic aperture radar (PALSAR) data of advanced land observing satellite (ALOS) was used in this study for forest aboveground biomass (AGB) retrieval of Dudhwa National Park, India. The shift in the polarization orientation angle (POA) is a major problem that affects the PolSAR-based scattering information. The two sources of POA shift are Faraday rotation angle (FRA) and structural properties of the scatterer. Analysis was carried out to explore the effect of FRA in the SAR data. Deorientation of PolSAR data was implemented to minimize any ambiguity in the scattering retrieval of model-based decomposition. After POA compensation of the coherency matrix, a decrease in the power of volume scattering elements was observed for the forest patches. This study proposed a framework to extend the water cloud model for AGB retrieval. The proposed PolSAR-based EWCM showed less dependency on field data for model parameters retrieval. The PolSAR-based scattering was used as input model parameters to derive AGB for the forest area. Regression between PolSAR-decomposition-based volume scattering and AGB was performed. Without deorientation of the PolSAR coherency matrix, EWCM showed a modeled AGB of 92.90 t ha−1, and a 0.36 R2 was recorded through linear regression between the field-measured AGB and the modeled output. After deorientation of the PolSAR data, an increased R2 (0.78) with lower RMSE (59.77 t ha−1) was obtained from EWCM. The study proves the potential of a PolSAR-based semiempirical model for forest AGB retrieval. This study strongly recommends the POA compensation of the coherency matrix for PolSAR-scattering-based semiempirical modeling for forest AGB retrieval.


Sign in / Sign up

Export Citation Format

Share Document