scholarly journals Use of leucine to improve aerodynamic properties of ciprofloxacin-loaded maltose microparticles for inhalation

Author(s):  
Barbara Lamy ◽  
Dolores Remedios Serrano ◽  
Peter O’Connell ◽  
William Couet ◽  
Sandrine Marchand ◽  
...  

Ciprofloxacin (CIP) apparent permeability and absorption rate across the pulmonary epithelium can be controlled by its complexation with copper (II) ion. The aim of the current study was to formulate CIP-Cu-loaded microparticles comprising three main excipients, calcium carbonate, maltose and L-leucine, and to process by spray drying so as to generate particles with suitable aerodynamic properties for pulmonary delivery using a dry powder inhaler. Different maltose:calcium carbonate ratios were used to prepare microparticles, and the role of the excipients on the particles’ physicochemical properties, stability, and aerosolization characteristics were investigated. All the formulations without L-leucine were fully X-ray amorphous. In the presence of L-leucine, diffraction peaks of low intensity were observed, which were attributed to the crystallization of the L-leucine at the particle surfaces. The addition of L-leucine modified the particle morphology and reduced the median geometric and aerodynamic diameters to 3.2 and 3.4 µm, respectively. The fine particle fraction of powder emitted from a Handihaler® device was increased up to 65.4%, predicting high total lung deposition. Stability studies showed that the powder X-ray diffraction pattern did not change over 21 months of storage in desiccated conditions, suggesting a good physical stability of the optimized formulation comprised of CIP-Cu, maltose and L-Leucine.

2021 ◽  
Vol 21 (11) ◽  
pp. 5714-5722
Author(s):  
S. Fuentes ◽  
D. Espinoza ◽  
J. León

This paper discusses the structure, particle morphology, and optical properties of un-doped ZnO and ZnO doped with Er3+ and Yb3+ lanthanide ion nanoparticles (NPs) through a process denominated sol-gel-hydrothermal. According to the pattern of X-ray diffraction, ZnO:Er and ZnO:Yb is formed by a single-phase wurtzite structure with crystallites sized ~65 nm on average, and Er or Yb dopant ions in the hexagonal structure of ZnO, specifically in its distorted lattice sites. The results also suggest the possible role of oxygen vacancies or Ox– (defects) in the energy transfer from ZnO to the Er or Yb ions with a decrease of 3.18 eV and 3.19 eV in bandgap values to a red shift.


1993 ◽  
Vol 58 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Abd El-Aziz A. Said

Molybdenum oxide catalyst doped or mixed with (1 - 50) mole % Fe3+ ions were prepared. The structure of the original samples and the samples calcined at 400 °C were characterized using DTA, X-ray diffraction and IR spectra. Measurements of the electrical conductivity of calcined samples with and without isopropyl alcohol revealed that the conductance increases on increasing the content of Fe3+ ions up to 50 mole %. The activation energies of charge carriers were determined in presence and absence of the alcohol. The catalytic dehydration of isopropyl alcohol was carried out at 250 °C using a flow system. The results obtained showed that the doped or mixed catalysts are active and selective towards propene formation. However, the catalyst containing 40 mole % Fe3+ ions exhibited the highest activity and selectivity. Correlations were attempted to the catalyst composition with their electronic and catalytic properties. Probable mechanism for the dehydration process is proposed in terms of surface active sites.


2021 ◽  
Vol 19 (1) ◽  
pp. 745-754
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Eddy Heraldy ◽  
Rachmadani ◽  
Yuniawan Hidayat ◽  
Indriana Kartini

Abstract The properties of three types of CoMo/USY catalysts with different synthesized methods have been studied. The sequential and co-impregnation methods followed by activation using calcination and reduction process have been conducted. The properties of the catalysts were examined using Fourier-transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) with refinement, and surface area analyzer (SAA). The FTIR spectrum study revealed the enhanced intensity of its Bronsted acid site, and the XRD diffractogram pattern verified the composition of pure metals, oxides, and alloys in the catalyst. The SAA demonstrated the mesoporous features of the catalyst. Scanning electron microscopy showed an irregular particle morphology. Additional analysis using the transmission electron microscopy indicated that the metal has successfully impregnated without damaging the USY structure.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


1999 ◽  
Vol 55 (11) ◽  
pp. 1914-1916 ◽  
Author(s):  
F. A. V. Seixas ◽  
W. F. de Azevedo ◽  
M. F. Colombo

In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Å resolution using a synchrotron-radiation source. Crystals belong to the space group P21212 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
Aparna Pareek ◽  
Xavier Torrelles ◽  
Jordi Rius ◽  
Uta Magdans ◽  
Hermann Gies

1999 ◽  
Vol 79 (1) ◽  
pp. 103-109 ◽  
Author(s):  
F. Courchesne ◽  
J.-F. Laberge ◽  
A. Dufresne

The role of soil organic matter (OM) on SO4 retention was investigated by comparing OM content, SO4 retention, and the distribution of Fe, Al and Si compounds in OM-poor (Grands-Jardins, PGJ) and OM-rich (Hermine, HER) Podzols from Québec, Canada. At both sites, four pedons were sampled by horizon; soil pH in H2O, organic C, phosphate-extractable SO4 and, sodium pyrophosphate, acid ammonium oxalate and dithionite-citrate-bicarbonate (DCB) extractable Fe, Al and Si were measured for each mineral horizon. The mineralogy of the clay (<2 µm) and fine silt (2–20 µm) fractions of selected horizons was determined by X-ray diffraction (XRD) and infrared spectroscopy (IR). Weighted mean organic C and pyrophosphate extractable Fe and Al contents were significantly higher in the HER than in the PGJ sola, while the PGJ soils were richer in amorphous inorganic Al. No trends were observed for inorganic Fe compounds. Chemical dissolution and IR allowed the identification of short-range ordered aluminosilicates, probably allophane, in the OM-poor and slightly acidic to neutral PGJ soils. These materials were absent from the OM-rich and acidic HER soils. Phosphate extractions showed that the weighted mean native SO4 content was five times higher in the PGJ than in the HER soil. Finally, native SO4 was strongly related to inorganic Fe, Al and Si (associated with allophane) at PGJ but only to inorganic Fe at HER. These results indicate that OM indirectly affects SO4 sorption through the influence organic substances exerts on the nature and distribution of pedogenic Fe, Al and Si compounds, such as allophane, in Podzolic profiles. Key words: Organic matter, sulfate, imogolite, allophane, silica, Podzol


1986 ◽  
Vol 250 (2) ◽  
pp. F302-F307 ◽  
Author(s):  
J. M. Burnell ◽  
C. Liu ◽  
A. G. Miller ◽  
E. Teubner

To study the effects of bicarbonate and magnesium on bone, mild acidosis and/or hypermagnesemia were produced in growing rats by feeding ammonium chloride and/or magnesium sulfate. Bone composition, quantitative histomorphometry, and mineral x-ray diffraction (XRD) characteristics were measured after 6 wk of treatment. The results demonstrated that both acidosis (decreased HCO3) and hypermagnesemia inhibited periosteal bone formation, and, when combined, results were summative; and the previously observed in vitro role of HCO3- and Mg2+ as inhibitors of crystal growth were confirmed in vivo. XRD measurements demonstrated that decreased plasma HCO3 resulted in larger crystals and increased Mg resulted in smaller crystals. However, the combined XRD effects of acidosis and hypermagnesemia resembled acidosis alone. It is postulated that the final composition and crystal structure of bone are strongly influenced by HCO3- and Mg2+, and the effects are mediated by the combined influence on both osteoblastic bone formation and the growth of hydroxyapatite.


2007 ◽  
Vol 22 (7) ◽  
pp. 1879-1887 ◽  
Author(s):  
Y.K. Jee ◽  
Y.H. Ko ◽  
Jin Yu

Varying amounts of Zn (1, 3, and 7 wt%) were added to Sn–3.5Ag solder on a Cu pad, and the resultant solder joint microstructures after a reflow and isothermal aging (150 °C, up to 500 h) were investigated using scanning electron microscopy, energy dispersive x-ray, and x-ray diffraction, which were subsequently correlated to the results of microhardness and drop tests. Zinc was effective in improving the drop resistance of Sn–3.5Ag solder on the Cu pad, and an addition of 3 wt% Zn nearly doubled the number of drops-to-failure (Nf). The beneficial role of Zn was ascribed to suppression of Cu6Sn5 and precipitation of Zn-containing intermetallic compounds (IMCs). However, the Zn effect was reduced as Cu6Sn5 and Ag3Sn precipitated in a joint IMC layer after prolonged aging. The interface between Ag5Zn8 and Cu5Zn8 was resistant to drop impact, but two other layered IMC structures of Cu6Sn5/Cu3Sn and Cu5Zn8/Cu6Sn5 were not.


Sign in / Sign up

Export Citation Format

Share Document