scholarly journals Calcium-Sensing Receptor Antagonist NPS-2143 Inhibits Breast Cancer cell Proliferation, Migration and Invasion via Downregulation of p-ERK1/2, Bcl-2 and Integrin β1 and Induces Caspase 3/7 Activation

Author(s):  
Mohammad A Y Alqudah ◽  
Marwah Azaizeh ◽  
Aref Zayed ◽  
Leen Asaad

Purpose: Calcium-sensing receptor (CaSR) has been associated with breast cancer metastasis to the bone. Targeting chemoattractant factors, such as calcium, that are released in response to bone resorption could prevent metastasis and induce apoptosis of cancer cells. In the present study, we investigated the potential caspase 3/7 activation following treatment with a CaSR antagonist, NPS-2143, in breast cancer cells. In addition, the effects of NPS-2143 on breast cancer cell proliferation, migration and invasion were assessed. Methods: Colorimetric MTT assay was used to evaluate cell viability. Apo-one homogeneous caspase-3/7 assay was used to measure caspase 3/7 activities in breast cancer cells. Cell migration and invasion were assessed using scratch wound assay and matrigel invasion chambers, respectively. The protein expressions of p-ERK1/2, integrin β1 and Bcl-2 were evaluated using western blotting. Results: Our study revealed that NPS-2143 significantly reduced cell proliferation with half maximal (50%) inhibitory concentration (IC50) values of 4.08 and 5.71 µM in MDA-MB-231 and MCF-7 cells, respectively. NPS-2143 induced caspase 3/7 activation in MDA-MB-231 breast cancer cells which was accompanied with a remarkable reduction in the expression of Bcl-2 antiapoptotic protein. NPS-2143 suppressed migratory and invasive abilities of MDA-MB-231 cells with a significant reduction in the expression of p-ERK1/2 and integrin β1 proteins. Conclusion: Our study confirms the ability NPS-2143 to suppress proliferative, migratory and invasive effects of breast cancer cells which was accompanied by caspase 3/7 activation and suggests the potential of NPS-2143 as a promising anti-cancer molecule in breast cancer.

2021 ◽  
pp. 096032712198942
Author(s):  
Xiaoxue Zhang ◽  
Xianxin Xie ◽  
Kuiran Gao ◽  
Xiaoming Wu ◽  
Yanwei Chen ◽  
...  

As one of the leading causes of cancer-related deaths among women, breast cancer accounts for a 30% increase of incidence worldwide since 1970s. Recently, increasing studies have revealed that the long non-coding RNA ILF3-AS1 is involved in the progression of various cancers. Nevertheless, the role of ILF3-AS1 in breast cancer remains largely unknown. In the present study, we found that ILF3-AS1 was highly expressed in breast cancer tissues and cells. ILF3-AS1 silencing inhibited breast cancer cell proliferation, migration and invasion, and promoted cell apoptosis. ILF3-AS1 bound with miR-4429 in breast cancer cells. Moreover, RAB14 was a downstream target of miR-4429, and miR-4429 expression was negatively correlated with RAB14 or ILF3-AS1 expression in breast cancer tissues. The result of rescue experiments demonstrated that overexpression of RAB14 can reverse the inhibitory effect of ILF3-AS1 knockdown on breast cancer cell proliferation, migration and invasion. Overall, ILF3-AS1 promotes the malignant phenotypes of breast cancer cells by interacting with miR-4429 to regulate RAB14, which might offer a new insight into the underlying mechanism of breast cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yaohua Fan ◽  
Yan Li ◽  
Yuzhang Zhu ◽  
Guiping Dai ◽  
Dongjuan Wu ◽  
...  

Objectives. Breast cancer is the most common malignant tumor among females, and miRNAs have been reported to play an important regulatory role in breast cancer progression. This study aimed to explore the function and underlying molecular mechanism of miR-301b-3p in breast cancer. Methods. Differential analysis and survival analysis were performed based on the data accessed from the TCGA-BRCA dataset for identification of the target miRNA. Bioinformatics analysis was conducted to predict the downstream target gene of the miRNA. Real-time quantitative PCR was carried out to detect the expression of miR-301b-3p and nuclear receptor subfamily 3 group C member 2 (NR3C2). Western blot was used to assess the protein expression of NR3C2. Cell counting kit-8 assay was performed to evaluate the proliferation of breast cancer cells. Transwell assay was conducted to determine the migratory and invasive abilities of breast cancer cells. Dual-luciferase reporter assay was employed to verify the targeting relationship between miR-301b-3p and NR3C2. Results. miR-301b-3p was elevated in breast cancer cell lines and promoted cell proliferation, migration, and invasion in terms of its biological function in breast cancer. NR3C2 was validated as a direct target of miR-301b-3p via bioinformatics analysis and dual-luciferase reporter assay, and NR3C2 was downregulated in breast cancer cell lines. The rescue experiment indicated that NR3C2 was involved in the mechanism by which miR-301b-3p regulated the malignant phenotype of breast cancer cells. Conclusion. The present study revealed for the first time that miR-301b-3p could foster breast cancer cell proliferation, migration, and invasion by targeting NR3C2, unveiling that miR-301b-3p is a novel carcinogen in breast cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1196 ◽  
Author(s):  
Subhawat Subhawa ◽  
Teera Chewonarin ◽  
Ratana Banjerdpongchai

Houttuynia cordata Thunb. (HCT) and Piper ribesioides Wall. (PR) are common herbs that are widely distributed throughout East Asia and possess various biological properties including anti-cancer effects. However, in breast cancer, their mechanisms responsible for anti-carcinogenic effects have not been clarified yet. In this study, the inhibitory effects of HCT and PR ethanolic extracts on breast cancer cell proliferation, migration, invasion and apoptosis were examined. In MCF-7 and MDA-MB-231 cells, HCT and PR extracts at low concentrations can inhibit colony formation and induce G1 cell cycle arrest by downregulating cyclinD1 and CDK4 expression. Additionally, HCT and PR extracts also decreased the migration and invasion of both breast cancer cell lines through inhibition of MMP-2 and MMP-9 secretion. Moreover, the induction of apoptosis was observed in breast cancer cells treated with high concentrations of HCT and PR extracts. Not only stimulated caspases activity, but HCT and PR extracts also upregulated the expression of caspases and pro-apoptotic Bcl-2 family proteins in breast cancer cells. Altogether, these findings provide the rationale to further investigate the potential actions of HCT and PR extracts against breast cancer in vivo.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Travis B. Salisbury ◽  
Gary Z. Morris ◽  
Justin K. Tomblin ◽  
Ateeq R. Chaudhry ◽  
Carla R. Cook ◽  
...  

Obesity increases human cancer risk and the risk for cancer recurrence. Adipocytes secrete paracrine factors termed adipokines that stimulate signaling in cancer cells that induce proliferation. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays roles in tumorigenesis, is regulated by exogenous lipophilic chemicals, and has been explored as a therapeutic target for cancer therapy. Whether exogenous AHR ligands modulate adipokine stimulated breast cancer cell proliferation has not been investigated. We provide evidence that adipocytes secrete insulin-like growth factor 2 (IGF-2) at levels that stimulate the proliferation of human estrogen receptor (ER) positive breast cancer cells. Using highly specific AHR ligands and AHR short interfering RNA (AHR-siRNA), we show that specific ligand-activated AHR inhibits adipocyte secretome and IGF-2-stimulated breast cancer cell proliferation. We also report that a highly specific AHR agonist significantly (P<0.05) inhibits the expression of E2F1, CCND1 (known as Cyclin D1), MYB, SRC, JAK2, and JUND in breast cancer cells. Collectively, these data suggest that drugs that target the AHR may be useful for treating cancer in human obesity.


2020 ◽  
Author(s):  
Aradhana Singh ◽  
Ranjitsinh Devkar ◽  
Anupam Basu

AbstractTLR3 mediated apoptotic changes in cancer cells are well documented and hence several synthetic ligands of TLR3 are being used for adjuvant therapy. But there are reports showing contradictory effect of TLR3 signaling which includes our previous report that had shown cell proliferation following surface localization of TLR 3. However, the underlying mechanism of cell surface localization of TLR3 and subsequent cell proliferation lacks clarity. This study addresses TLR3 ligand mediated signaling cascade that regulates a proliferative effect in breast cancer cells (MDA MB 231 and T47D) challenged with TLR3 ligand in the presence of MyD88 inhibitor. Evidences were obtained using immunoblotting, co-immunoprecipitation, confocal microscopy, Immunocytochemistry, ELISA, and flowcytometry. Results had revealed that TLR3 ligand treatment significantly enhanced breast cancer cell proliferation marked by an upregulated expression of cyclinD1 but the same were suppressed by addition of MyD88 inhibitor. Also, expression of IRAK1-TRAF6-TAK1 were altered in the given TLR3-signaling pathway. Inhibition of MyD88 disrupted the downstream adaptor complex and mediated signaling through TLR3-MyD88-NF-κB (p65)-IL6-Cyclin D1 pathway. TLR3 mediated alternative signaling of the TLR3-MyD88-IRAK1-TRAF6-TAK1-TAB1-NF-κB axis leads to upregulation of IL6 and cyclinD1. This response is hypothesized to be via the MyD88 gateway that culminates in proliferation of breast cancer cells. Overall, this study provides first comprehensive evidence on involvement of canonical signaling of TLR3 using MyD88 - Cyclin D1 mediated breast cancer cell proliferation. The findings elucidated herein will provide valuable insights into understand the TLR3 mediated adjuvant therapy in cancer.


Sign in / Sign up

Export Citation Format

Share Document