scholarly journals Electrospun Polycaprolactone Nanofibers: Current Research and Applications in Biomedical Application

Author(s):  
Arezo Azari ◽  
Ali Golchin ◽  
Maryam Mahmoodinia Maymand ◽  
Fatemeh Mansouri ◽  
Abdolreza Ardeshirylajimi

Unique mechanical properties, miscibility potency, and biodegradability are the three prominent features of Polycaprolactone (PCL), making it an attractive biomaterial which commonly applied in regenerative medicine and biomedical engineering. Different strategies developed for fabricating nanofibrous construct, electrospinning is a practical, simple, and efficient technique based on electro-hydrodynamic systems that use an electrified viscous fluid jet drawn by the air toward a collector at a changing electric potential. PCL electrospun-based nanofibrous composites as proper scaffolds are employed in stem cell-related research, particularly in tissue engineering, wound dressing, and systems designed for sending drugs. A compilation of mechanochemical properties and most common biological performance on PCL-based electrospun fibrous structures in biomedical application are included in this study. Therefore, electrospun PCL nanofiber applying has been presented, and after that, current progress and prospects have been discussed. Literature reviews revealed that electrospun PCL nanofibrous composites had gained significant attention in regenerative medicine, and these structures have shown notable development in mechanobiological properties. This evidence is a crucial success for biomedical strategies, especially in regenerative medicine.

2011 ◽  
Vol 4 (7) ◽  
pp. 1369-1375 ◽  
Author(s):  
Haydar U. Zaman ◽  
J.M.M. Islam ◽  
Mubarak A. Khan ◽  
Ruhul A. Khan

2020 ◽  
Vol 28 ◽  
Author(s):  
Qi Yuan ◽  
Jing Bian ◽  
Ming-Guo Ma

Background: Recently, there has been increasing interest in nanomaterials processed using renewable and sustainable resources. Nanocellulose-based materials are of paramount value in the applications of biomedicine owing to their tailorable surface modification, favorable optical transparency, good hydrophilicity, excellent biocompatibility, and outstanding mechanical properties. Methods: In the review, the recent advancements of nanocellulose, including cellulose nanofibers (CNFs), cellulose nanocrystals (CNCs), and bacterial cellulose (BC), are summarized, which are promising for biomedical applications. Results: By discussing different forms (one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D)), the superiority of the nanocellulose-based materials with different constructed structures will be clarified for various biomedical applications, such as biosensing, drug delivery, wound dressing, and tissue engineering. Conclusion: Furthermore, the challenges and prospects for future development of nanocellulose-based materials in biomedical applications are also discussed at the end in the review.


2021 ◽  
Author(s):  
Yaling Deng ◽  
Ningning Yang ◽  
Oseweuba Valentine Okoro ◽  
Amin Shavandi ◽  
Lei Nie

Alginate has received much attention due to its biocompatibility. However, the properties of pure alginate are limited, such as weak mechanical strength, which limits its application. Alginate-based composite effectively overcomes the defect of pure alginate. The molecular weight and microstructure can be designed. More importantly, the essential properties for clinical application are improved, including mechanical properties, biocompatibility, gelation ability, chondrogenic differentiation and cell proliferation. This chapter will describe development of alginate-based composite in biomedical application. In the fields of wound dressing, drug delivery, and tissue engineering, the impact of structural changes on performance has been stated. To provide readers with understanding of this chapter, the structure and characterization of alginate will be included.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2020 ◽  
Vol 27 (28) ◽  
pp. 4622-4646 ◽  
Author(s):  
Huayu Liu ◽  
Kun Liu ◽  
Xiao Han ◽  
Hongxiang Xie ◽  
Chuanling Si ◽  
...  

Background: Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics, which make them widely used in many fields. This review aims to introduce the preparation of CNFs-based hydrogels and their recent biomedical application advances. Methods: By searching the recent literatures, we have summarized the preparation methods of CNFs, including mechanical methods and chemical mechanical methods, and also introduced the fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels, including scaffold materials and wound dressings. Results: CNFs-based hydrogels are new types of materials that are non-toxic and display a certain mechanical strength. In the tissue scaffold application, they can provide a micro-environment for the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound surface and protect the wound from the external environment, thereby effectively promoting the healing of skin tissue. Conclusion: By summarizing the preparation and application of CNFs-based hydrogels, we have analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels is still in the laboratory stage. It needs further exploration to be applied in practice. The development of medical hydrogels with high mechanical properties and biocompatibility still poses significant challenges.


2019 ◽  
Vol 14 (2) ◽  
pp. 93-116 ◽  
Author(s):  
Shabnam Mohebbi ◽  
Mojtaba Nasiri Nezhad ◽  
Payam Zarrintaj ◽  
Seyed Hassan Jafari ◽  
Saman Seyed Gholizadeh ◽  
...  

Biomedical engineering seeks to enhance the quality of life by developing advanced materials and technologies. Chitosan-based biomaterials have attracted significant attention because of having unique chemical structures with desired biocompatibility and biodegradability, which play different roles in membranes, sponges and scaffolds, along with promising biological properties such as biocompatibility, biodegradability and non-toxicity. Therefore, chitosan derivatives have been widely used in a vast variety of uses, chiefly pharmaceuticals and biomedical engineering. It is attempted here to draw a comprehensive overview of chitosan emerging applications in medicine, tissue engineering, drug delivery, gene therapy, cancer therapy, ophthalmology, dentistry, bio-imaging, bio-sensing and diagnosis. The use of Stem Cells (SCs) has given an interesting feature to the use of chitosan so that regenerative medicine and therapeutic methods have benefited from chitosan-based platforms. Plenty of the most recent discussions with stimulating ideas in this field are covered that could hopefully serve as hints for more developed works in biomedical engineering.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


Sign in / Sign up

Export Citation Format

Share Document