scholarly journals Developments in petroleum exploration offshore West Greenland in 1978

1979 ◽  
Vol 95 ◽  
pp. 42-45
Author(s):  
G Henderson

During the winter of 1977-1978 results to date from all work undertaken in the concession areas offshore West Greenland were thoroughly reviewed by the concessionaires. A negative evaluation had aIready been placed on this area because of the disappointing resuIts from all the wells drilled in 1976 and 1977, in particular the lack of the necessary combination of suitable source rocks and reservoir rocks (Henderson, 1978). After further consideration, companies that had earlier contemplated drilling in 1978 decided against doing so. In the event, the only work undertaken within the concession area was a seismic survey by the Chevron Group in concession 28, amounting to some 341 line kilometres.

2007 ◽  
Vol 13 ◽  
pp. 29-32 ◽  
Author(s):  
Anders Scherstén ◽  
Martin Sønderholm

The extensive and very deep? Jurassic/Cretaceous–Palaeogene sedimentary basins offshore West Greenland have a significant petroleum exploration potential. This is particularly true for the offshore region west of Disko and Nuussuaq where a live petroleum system has been documented for many years. At present, stratigraphic knowledge in this area is almost nonexistent and analogue studies from onshore areas and offshore exploration wells to the south are therefore crucial to understanding the distribution and quality of possible reservoir rocks in the Disko–Nuussuaq offshore area. One of the main risk parameters in petroleum exploration in this region is the presence of an adequate reservoir rock. Tectonostratigraphic considerations suggest that several sand-prone stratigraphic levels are probably present, but their pro v enance and reservoir quality are at present poorly known both onshore and offshore. A sediment provenance study including zircon provenance U-Pb dating and wholerock geochemical analysis was therefore initiated by the Geological Survey of Den mark and Greenland (GEUS) in preparation for the Disko West Licensing Round 2006 (Scherstén et al. 2007). The main aims of this study were to:1. Characterise the source areas and dispersal patterns for the various sandstone units of Cretaceous–Paleocene age in the Nuussuaq Basin and compare these with sandstone units in selected West Greenland offshore exploration wells (Figs 1, 2), employing advanced zircon provenance U-Pb dating using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS; cf. Frei et al. 2006). 2. Detect possible changes in sediment source with time, e.g. local versus regional sources. Zircon as a provenance tool is receiving increasing attention and has proven to be a powerful indicator of clastic sedi- ment sources, a tracer of the Earth’s oldest materials, and a tracer of continental crust-forming processes (Froude et al. 1983; Williams & Claesson 1987; Dodson et al. 1988; Fedo et al. 2003; Hawkesworth & Kemp 2006). Zircon is common in continental rocks and it is assumed that its distribution in sediments will normally represent the source rocks. Although there are several complications, the sediment zircon U-Pb age frequency should in general terms mirror the relative proportions of different source materials. This ass umpt ion is particularly important if exotic components can be identified, as their frequency will provide an estimate of the exotic influx: it may also be essential in trac ing sediment paths that affect the detrital compositions and subsequent diagenetic history of possible hydrocarbon reservoir rocks.


1985 ◽  
Vol 22 (7) ◽  
pp. 1001-1019 ◽  
Author(s):  
Flemming Rolle

Five dry exploratory wells were drilled through Upper Cretaceous and Tertiary sediments on the West Greenland shelf in 1976 and 1977. Two of these entered Precambrian basement, two bottomed in Paleocene or Upper Cretaceous basalt, and one in Campanian mudstone. On the basis of samples and logs supplied to the Geological Survey of Greenland the sedimentary sequence has been divided into seven new formations: the Campanian Narssarmiut Formation, consisting of coarse basement wash and black mudstone; the Campanian to Eocene Ikermiut Formation, consisting of marine organic-rich mudstone; the Upper Paleocene to Eocene Hellefisk Formation, comprising shallow-marine to paralic sandstone and mudstone; the Eocene Nukik Formation, consisting of turbiditic sandstone and mudstone; the Eocene to Oligocene Kangâmiut Formation of shelf to shallow-marine clean and argillaceous sandstone; the Oligocene to Neogene Manîtsoq Formation, consisting of coarse paralic to fan delta sandstone; and the Neogene Ataneq Formation, consisting of protected shallow-marine mudstone.The sedimentary evolution of the area fits well with earlier proposed models for the tectonic evolution of the Baffin Bay–Labrador Sea region.Potential petroleum source rocks are present in the Upper Cretaceous to Paleocene mudstone, and, even though they are largely immature in the drilled sections, they are expected to have entered the petroleum generation zone in the deeper parts of the basin. Their potential is mainly for gas, but some oil potential is also present. No reservoir rocks were encountered in the deeper parts of the sedimentary sequences, and the porous sandstones that occur higher in the sequence lack seals.


1982 ◽  
Vol 22 (1) ◽  
pp. 42 ◽  
Author(s):  
Peter J. Cook

As part of a larger project to re-evaluate the petroleum potential of Australia, it was considered necessary to produce a series of Cambrian palaeogeographic maps. This required the compilation and correlation of a large number of stratigraphic columns, the delineation of sedimentologlcally-significant time intervals, the production of data maps for these same time intervals, and the development of a Cambrian 'tectonic' map. This palaeogeographic study was not undertaken to establish precise exploration targets. However, it does provide new information on where many of the essential components are, what age they are, and why they are there, and as such is a valuable tool in the overall exploration and resource evaluation strategy.The six palaeogeographic maps finally produced illustrate events involving continental drift, tectonics, and climatic and sea-level variations, over a period of 70 million years. Together, these events produced marked changes in the palaeogeography and depositional environments, which in turn profoundly affected the type and distribution of sediments being deposited on and around the palaeo-continent during the Cambrian. Using the palaeogeographic maps and the data accumulated for the project, it is possible to demonstrate that organic-rich sediments, with the potential to be petroleum source rocks, were relatively common during the Cambrian, especially on the eastern cratonic margin during the Lower Cambrian (Officer and possible Amadeus Basins) and the Middle Cambrian (Georgina Basin). There may also be some suitable petroleum source rocks in the Ord Basin. Limestones and dolomites, some of which may constitute potential reservoir rocks, were deposited in a number of Cambrian intracratonic basins (Amadeus, Georgina Basins) and on the shelf (Cooper Basin). Cambrian sandstones in Australia are commonly poor reservoir rocks, but where they have been subjected to shore-line or shelf 'clean-up', for example during the Middle and Upper Cambrian on the northwest side of the craton (Bonaparte Gulf Basin), there may be some potential reservoir rocks. Some sandstones may also be present on the south side of the Cooper Basin. Fine-grained impermeable sediments (potential cap rocks) were deposited throughout the Cambrian, but evaporites were most common during the Early and lower Middle Cambrian. Synsedimentary tectonics may have produced structural and stratigraphlc traps, and a major phase of karsting occurred in the Cambrian. Therefore, the Cambrian of Australia is believed to have many of the prerequisites for the generation, migration and entrapment of hydrocarbons. Especially favourable areas for these features may lie to the southeast of the Georgina Basin and in the offshore region northwest of the Ord and Bonaparte Gulf Basins.


1969 ◽  
Vol 22 ◽  
pp. 1-63
Author(s):  
G Henderson

The West Greenland basin contains marine and non-marine sediments ranging in age from Lower Cretaceous (Barremian-Aptian) to Paleocene (Upper Danian). The marine sediments are at least 1500 m thick in parts of Nûgssuaq and may reach 2000 m; the non-marine sediments attain a thickness of 1500 m in Nûgssuaq and Disko. Sediments older than those exposed may be present at depth. In a considerable part of the area the sediments are overlain by Tertiary basalts, which locally attain a thickness of about 8 km. The basin is fault-bounded and its coastline was probably largely fault-determined from the onset of sedimentation. Sandstone and shale are the main sedimentary types, and bituminous shales are an important part of the succession. Recent chemical analyses have shown that the bituminous shales include true source rocks; additional evidence in support of the existence of source rocks in the basin is provided by the presence of migrated hydrocarbons in sandstone close to a fault and by the presence of bitumen amongst the fluids brought to the surface in a mud volcano. The sandstones are regarded as good potential reservoir rocks, and there are good possibilities for the presence of structural and stratigraphic traps at depth. The first indications are encouraging and invite further exploration for oil and gas.


Author(s):  
Flemming G. Christiansen ◽  
Jørgen A. Bojesen-Koefoed ◽  
Gregers Dam ◽  
Troels Laier ◽  
Sara Salehi

The Nuussuaq Basin in West Greenland has an obvious exploration potential. Most of the critical elements are well documented, including structures that could form traps, reservoir rocks, seals and oil and gas seepage that documents petroleum generation. And yet, we still lack a full understanding of the petroleum systems, especially the distribution of mature source rocks in the subsurface and the vertical and lateral migration of petroleum into traps. A recently proposed anticlinal structural model could be very interesting for exploration if evidence of source rocks and migration pathways can be found. In this paper, we review all existing, mostly unpublished, data on gas observations from Nuussuaq. Furthermore, we present new oil and gas seepage data from the vicinity of the anticline. Occurrence of gas within a few kilometres on both sides of the mapped anticline has a strong thermogenic fingerprint, suggesting an origin from oil-prone source rocks with a relatively low thermal maturity. Petroleum was extracted from an oil-stained hyaloclastite sample collected in the Aaffarsuaq valley in 2019, close to the anticline. Biomarker analyses revealed the oil to be a variety of the previously characterised “Niaqornaarsuk type,” reported to be formed from Campanian-age source rocks. Our new analysis places the “Niaqornaarsuk type” 10 km from previously documented occurrences and further supports the existence of Campanian age deposits developed in source rock facies in the region.


1998 ◽  
Vol 18 ◽  
Author(s):  
R. P. Bashyal

The southern part of Nepal comprising of Terai plain and Churia foothills are the prospecting area for petroleum exploration. Geological, geochemical and seismic surveys are carried out during the last decade. Such investigations have indicated a fairly good source rocks in the Melpani and Swat formations of the Surkhet Group and also in the Gondwana and Lakharpata groups. Similarly, the reservoir and seal rocks are also adequately identified. The seismic survey confirms various kinds of traps. The oil generation, expulsion and migration are considered to have been contemporaneous with or to have postdated the formation of the traps. His Majesty's Government of Nepal has designed a Production Sharing Contract with attractive work and fiscal terms including the "Seismic Option" and "No Ring Fencing" incentives. The promotional activities have resulted to conclude the petroleum agreements for exploration in Block 10 (Biratnagar) by Shell International (1986-1990) and Block 3 (Nepalgunj) and Block 5 (Chitwan) by Texana Resources Co., USA.


2004 ◽  
Vol 4 ◽  
pp. 49-52 ◽  
Author(s):  
Jørgen A. Bojesen-Koefoed ◽  
Hans Peter Nytoft ◽  
Flemming G. Christiansen

For many years the existence of an oil-prone source rock off West Greenland was challenged by industry. But since 1992 when active oil seeps were found onshore West Greenland on the Nuussuaq peninsula (Fig. 1; Christiansen et al. 1996; Bojesen-Koefoed et al.1999), the question has changed focus to the age, distribution and potential of the source rock. Five different oils – each with their own characteristics – have been reported by the Geological Survey of Denmark and Greenland (GEUS). One of these, a typical marine shalederived oil with a possible regional distribution, is known as the Itilli oil. Geochemical analysis suggests that it may have been generated from Cenomanian–Turonian age marine shales, equivalent to prolific source rocks known from Ellesmere Island, Nunavut, Canada. Three of the other oils were generated from deltaic source rocks of Albian, Campanian and Paleocene ages, while one is of unknown origin (Bojesen-Koefoed et al. 1999). The presence of a regional marine source rock is important to petroleum exploration; GEUS has therefore investigated the possible existence of Mesozoic, in particular Cenomanian–Turonian, petroleum source rocks in West Greenland offshore areas. Since sediments older than the Santonian are not known from any of the six wells drilled offshore West Greenland (Fig. 1), assessment of oil-prone source rocks in older sedimentary successions must rely on circumstantial evidence offered by oil chemistry data and analogy studies. Petroleum in quantities amenable to chemical analysis has so far not been recovered from offshore. However, oilbearing fluid inclusions are known from the Ikermiut-1 well (unpublished data 2001, Phillips Petroleum and GEUS), a gas-kick was recorded during drilling of the Kangâmiut-1 well (Bate 1997), and seismic data indicate hydrocarbons in many areas (cross-cutting reflectors, bright spots, smearing of seismic). Petroleum exploration offshore West Greenland suffered for many years under the misconception that oceanic crust covered vast areas, rendering the region unattractive. However, the presence of thick sedimentary successions and rotated fault blocks in Cretaceous basins have been demonstrated to be present in areas previously believed to be underlain by Cretaceous–Tertiary oceanic crust (cf. Chalmers & Pulvertaft 2001). New high-quality seismic data, acquired by the seismic company TGS-NOPEC over recent years, combined with gravimetric data, have further demonstrated the presence of deep basins containing thick sedimentary successions in other areas (e.g. Christiansen et al. 2002). Despite the progress made over the past few years, the geological evolution of the Davis Strait region in general remains poorly understood, but new data on oil chemistry may shed some light on the history of this region.


2017 ◽  
Vol 54 (4) ◽  
pp. 227-264
Author(s):  
Ronald Johnson ◽  
Justin Birdwell ◽  
Paul Lillis

To better understand oil and bitumen generation and migration in the Paleogene lacustrine source rocks of the Uinta Basin, Utah, analyses of 182 oil samples and tar-impregnated intervals from 82 core holes were incorporated into a well-established stratigraphic framework for the basin. The oil samples are from the U.S. Geological Survey Energy Resources Program Geochemistry Laboratory Database; the tar-impregnated intervals are from core holes drilled at the Sunnyside and P.R. Spring-Hill Creek tar sands deposits. The stratigraphic framework includes transgressive and regressive phases of the early freshwater to near freshwater lacustrine interval of Lake Uinta and the rich and lean zone architecture developed for the later brackish-to-hypersaline stages of the lake. Two types of lacustrine-sourced oil are currently recognized in the Uinta Basin: (1) Green River A oils, with high wax and low β-carotane contents thought to be generated by source rocks in the fresh-to-brackish water lacustrine interval, and (2) much less common Green River B oils, an immature asphaltic oil with high β-carotane content thought to be generated by marginally mature to mature source rocks in the hypersaline lacustrine interval. Almost all oil samples from reservoir rocks in the fresh-to-brackish water interval are Green River A oils; however four samples of Green River A oils were present in the hypersaline interval, which likely indicates vertical migration. In addition, two samples of Green River B oil are from intervals that were assumed to contain only Green River A oil. Tar sand at the P.R. Spring-Hill Creek deposit are restricted to marginal lacustrine and fluvial sandstones deposited during the hypersaline phase of Lake Uinta, suggesting a genetic relationship to Green River B oils. Tar sand at the Sunnyside deposit, in contrast, occur in marginal lacustrine and alluvial sandstones deposited from the early fresh to nearly freshwater phase of Lake Uinta through the hypersaline phase. The Sunnyside deposit occurs in an area with structural dips that range from 7 to 14 degrees, and it is possible that some tar migrated stratigraphically down section.


Author(s):  
Flemming G. Christiansen ◽  
Anders Boesen ◽  
Jørgen A. Bojesen-Koefoed ◽  
James A. Chalmers ◽  
Finn Dalhoff ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Christiansen, F. G., Boesen, A., Bojesen-Koefoed, J. A., Chalmers, J. A., Dalhoff, F., Dam, G., Ferré Hjortkjær, B., Kristensen, L., Melchior Larsen, L., Marcussen, C., Mathiesen, A., Nøhr-Hansen, H., Pedersen, A. K., Pedersen, G. K., Pulvertaft, T. C. R., Skaarup, N., & Sønderholm, M. (1999). Petroleum geological activities in West Greenland in 1998. Geology of Greenland Survey Bulletin, 183, 46-56. https://doi.org/10.34194/ggub.v183.5204 _______________ In the last few years there has been renewed interest for petroleum exploration in West Greenland and licences have been granted to two groups of companies: the Fylla licence operated by Statoil was awarded late in 1996; the Sisimiut-West licence operated by Phillips Petroleum was awarded in the summer of 1998 (Fig. 1). The first offshore well for more than 20 years will be drilled in the year 2000 on one of the very spectacular structures within the Fylla area. To stimulate further petroleum exploration around Greenland – and in particular in West Greenland – a new licensing policy has been adopted. In July 1998, the administration of mineral and petroleum resources was transferred from the Danish Ministry of Environment and Energy to the Bureau of Minerals and Petroleum under the Government of Greenland in Nuuk. Shortly after this, the Greenlandic and Danish governments decided to develop a new exploration strategy. A working group consisting of members from the authorities (including the Geological Survey of Denmark and Greenland – GEUS) made recommendations on the best ways to stimulate exploration in the various regions on- and offshore Greenland. The strategy work included discussions with seismic companies because it was considered important that industry acquires additional seismic data in the seasons 1999 and 2000.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


Sign in / Sign up

Export Citation Format

Share Document