scholarly journals DEVELOPMENT OF MEANS FOR MONITORING THE PARAMETERS OF MICROCHIPS FOR ASSESSING RADIATION RESISTANCE

2021 ◽  
Author(s):  
Konstantin Zolnikov ◽  
I. Strukov ◽  
K. Chubur ◽  
Sergey Grechanyy ◽  
A. Yagodkin ◽  
...  

This article discusses the technical means of monitoring the performance of a special-purpose ECB for experimental evaluation of radiation resistance, in the absence of test measuring equipment that allows you to control the areas of the most degraded degradation when exposed to ionizing radiation and heavy charged particles of outer space.

2021 ◽  
Author(s):  
V. Zolnikov ◽  
I. Strukov ◽  
K. Chubur ◽  
Yu. Chevychelov ◽  
A. Yankov

This article discusses the development of effective methods and tools for assessing the fault tolerance of logical circuits, the mechanism of logical masking, the development of the route of re-synthesis of combinational circuits, methods for increasing fault tolerance. A method of iterative circuit modification is proposed, due to an increase in the level of logical masking of the circuit.


Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 55-62
Author(s):  
I. Yu. Lovshenko ◽  
V. R. Stempitsky ◽  
V. T. Shandarovich

The use of microelectronic products in outer space is possible if protection is provided against special external influencing factors, including radiation effect. For digital integrated circuits manufactured using submicron CMOS processes, the greatest influence is exerted by radiation effects caused by exposure to a heavy charged particle. The use of special design tools in the development of dual-purpose microcircuits, with increased resistance to the impact of heavy charged particles, prevents single events from occurring. Thus, the use of modern software products for device and technological modeling in microelectronics when developing the element base of radiation-resistant microcircuits for space purposes will cut the time to develop new products and make it possible to modernize (improve performance) already existing device and circuitry solutions. The paper delivers the results of modeling the impacts of heavy charged particles with a magnitude of linear energy transfer equal to 1.81, 10.1, 18.8, 55.0 MeV·cm2/mg, corresponding to nitrogen ions 15N+4 with an energy E = 1,87 MeV; argon 40Ar+12 with an energy E = 372 MeV; ferrum 56Fe+15 with an energy E = 523 MeV; xenon 131Xe+35 with an energy E = 1217 MeV, on electrical characteristics of n-MOSFET device structure. The dependences of the maximum drain current IС on the motion trajectory of a heavy charged particle and the ambient temperature are shown.


Author(s):  
A. S. Puzanov ◽  
V. V. Bibikova ◽  
I. Yu. Zabavichev ◽  
E. S. Obolenskaya ◽  
E. A. Tarasova ◽  
...  

2022 ◽  
Vol 14 (4) ◽  
pp. 51-58
Author(s):  
A. Zolnikova ◽  
Svetlana Evdokimova ◽  
O. Oksyuta ◽  
Natal'ya Panina ◽  
Maksim Solodilov

The paper considers methods of increasing the durability of radio-electronic equipment in space, namely, methods of detecting and correcting errors during the action of the HCP. Currently, redundancy methods are used to ensure durability, when two or three processors work in parallel in the system, and a special node compares the results of their work. If the results do not match, an error signal will be generated, and the system will begin to perform actions to correct it. The article describes and classifies the main circuit, structural-functional, algorithmic methods for detecting and correcting errors. It is shown that circuit solutions lead to an increase in the crystal area. Therefore, the problem arises of ensuring radiation resistance with a minimum increase in the crystal area.


Medicina ◽  
2019 ◽  
Vol 55 (9) ◽  
pp. 591 ◽  
Author(s):  
Mortezaee ◽  
Najafi ◽  
Farhood ◽  
Ahmadi ◽  
Shabeeb ◽  
...  

One of the uses of ionizing radiation is in cancer treatment. The use of heavy charged particles for treatment has been introduced in recent decades because of their priority for deposition of radiation energy in the tumor, via the Bragg peak phenomenon. In addition to medical implications, exposure to heavy charged particles is a crucial issue for environmental and space radiobiology. Ionizing radiation is one of the most powerful clastogenic and carcinogenic agents. Studies have shown that although both low and high linear energy transfer (LET) radiations are carcinogenic, their risks are different. Molecular studies have also shown that although heavy charged particles mainly induce DNA damage directly, they may be more potent inducer of endogenous generation of free radicals compared to the low LET gamma or X-rays. It seems that the severity of genotoxicity for non-irradiated bystander cells is potentiated as the quality of radiation increases. However, this is not true in all situations. Evidence suggests the involvement of some mechanisms such as upregulation of pro-oxidant enzymes and change in the methylation of DNA in the development of genomic instability and carcinogenesis. This review aimed to report important issues for genotoxicity of carcinogenic effects of heavy charged particles. Furthermore, we tried to explain some mechanisms that may be involved in cancer development following exposure to heavy charged particles.


2022 ◽  
Vol 14 (4) ◽  
pp. 43-51
Author(s):  
V. Zolnikov ◽  
A. Yagodkin ◽  
V. Antsiferova ◽  
Svetlana Evdokimova ◽  
Tatyana Skvortsova ◽  
...  

The work is devoted to the study of the sensitivity of the electronic component base (ECB) to the effects of heavy charged particles. At the same time, the degree of sensitivity is distinguished depending on the functional group of ECB products to the effects of ionization radiation from outer space and on the design and technological design of ECB products. The paper presents the characteristics and conditions for the use of ECB in the radio-electronic equipment of outer space to ensure minimal sensitivity to the effects of ionization radiation and to the thyristor effect. After the sensitivity analysis of ECB products is carried out, a preliminary selection of ECB is performed, requiring testing. The article discusses the criteria for determining the ECB that requires testing and is possible to use without testing. The methods of increasing the durability of radio-electronic equipment of space equipment and the directions of optimization of the methodology of analysis of ECB lists are determined.


2019 ◽  
pp. 57-63
Author(s):  
M. A. Artyukhova ◽  
S. N. Polesskiy

Human activity is often accompanied by exposure of ionizing radiation: the exploitation of space systems and power plants, research using isotopic sources, medicine. The development of electronic equipment is regulated by carrying out activities to ensure the required reliability and radiation resistance. However, the effect of ionizing radiation on reliability indicators is not taken into account properly, or is not taken into account at all, that sometimes leads to the loss of expensive equipment and even to human victims. The article discusses the methodology for carrying out an adequate estimate of the reliability considering the influence of external influencing factors, including ionizing radiation. The timeliness of decisions making to ensure the required reliability indicators is determined by the completeness of the reliability estimation at the design stage. Effort to ensure the reliability and durability of devices after the design stage is not economically viable. The completeness and adequacy of the estimation always depends on the interaction of specialists in different fields: designers, programmers, experts in the field of circuit design, electrical engineering and experts in the field of reliability and radiation resistance.


2009 ◽  
Vol 191 (16) ◽  
pp. 5240-5252 ◽  
Author(s):  
Dennis R. Harris ◽  
Steve V. Pollock ◽  
Elizabeth A. Wood ◽  
Reece J. Goiffon ◽  
Audrey J. Klingele ◽  
...  

ABSTRACT We have generated extreme ionizing radiation resistance in a relatively sensitive bacterial species, Escherichia coli, by directed evolution. Four populations of Escherichia coli K-12 were derived independently from strain MG1655, with each specifically adapted to survive exposure to high doses of ionizing radiation. D37 values for strains isolated from two of the populations approached that exhibited by Deinococcus radiodurans. Complete genomic sequencing was carried out on nine purified strains derived from these populations. Clear mutational patterns were observed that both pointed to key underlying mechanisms and guided further characterization of the strains. In these evolved populations, passive genomic protection is not in evidence. Instead, enhanced recombinational DNA repair makes a prominent but probably not exclusive contribution to genome reconstitution. Multiple genes, multiple alleles of some genes, multiple mechanisms, and multiple evolutionary pathways all play a role in the evolutionary acquisition of extreme radiation resistance. Several mutations in the recA gene and a deletion of the e14 prophage both demonstrably contribute to and partially explain the new phenotype. Mutations in additional components of the bacterial recombinational repair system and the replication restart primosome are also prominent, as are mutations in genes involved in cell division, protein turnover, and glutamate transport. At least some evolutionary pathways to extreme radiation resistance are constrained by the temporally ordered appearance of specific alleles.


Sign in / Sign up

Export Citation Format

Share Document