scholarly journals Modeling the impacts of heavy charged particles on electrical characteristics of n-MOSFET device structure

Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 55-62
Author(s):  
I. Yu. Lovshenko ◽  
V. R. Stempitsky ◽  
V. T. Shandarovich

The use of microelectronic products in outer space is possible if protection is provided against special external influencing factors, including radiation effect. For digital integrated circuits manufactured using submicron CMOS processes, the greatest influence is exerted by radiation effects caused by exposure to a heavy charged particle. The use of special design tools in the development of dual-purpose microcircuits, with increased resistance to the impact of heavy charged particles, prevents single events from occurring. Thus, the use of modern software products for device and technological modeling in microelectronics when developing the element base of radiation-resistant microcircuits for space purposes will cut the time to develop new products and make it possible to modernize (improve performance) already existing device and circuitry solutions. The paper delivers the results of modeling the impacts of heavy charged particles with a magnitude of linear energy transfer equal to 1.81, 10.1, 18.8, 55.0 MeV·cm2/mg, corresponding to nitrogen ions 15N+4 with an energy E = 1,87 MeV; argon 40Ar+12 with an energy E = 372 MeV; ferrum 56Fe+15 with an energy E = 523 MeV; xenon 131Xe+35 with an energy E = 1217 MeV, on electrical characteristics of n-MOSFET device structure. The dependences of the maximum drain current IС on the motion trajectory of a heavy charged particle and the ambient temperature are shown.

Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 81-86
Author(s):  
I. Yu. Lovshenko ◽  
A. Yu. Voronov ◽  
P. S. Roshchenko ◽  
R. E. Ternov ◽  
Ya. D. Galkin ◽  
...  

The results of the simulation the influence of the proton flux on the electrical characteristics of the device structure of dual-channel high electron mobility field effect transistor based on GaAs are presented. The dependences of the drain current ID and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown.


2017 ◽  
Vol 9 (4) ◽  
pp. 14-16
Author(s):  
Konstantin Zolnikov ◽  
Vera Meerson ◽  
A. Yankov ◽  
V. Kryukov

2021 ◽  
Author(s):  
Konstantin Zolnikov ◽  
K. Tapero ◽  
Valeriy Suhanov ◽  
D. Chernov

The article discusses the results of the ERI tests for the effects of heavy charged particles. The data that arose during the irradiation of single radiation effects are presented. During the irradi-ation of the samples, the measurement of the integral flux (fluence) of ions was carried out using track detectors. To conduct the tests, technological equipment was used that implements the operating modes of the tested analog-to-digital converter and provides measurement of the parameters-the validity criteria. When irradiating samples with ions, the occurrence of a thyristor effect, cata-strophic failure and functional interruption effects were not recorded.


2021 ◽  
Author(s):  
V. Zolnikov ◽  
I. Strukov ◽  
K. Chubur ◽  
Yu. Chevychelov ◽  
A. Yankov

This article discusses the development of effective methods and tools for assessing the fault tolerance of logical circuits, the mechanism of logical masking, the development of the route of re-synthesis of combinational circuits, methods for increasing fault tolerance. A method of iterative circuit modification is proposed, due to an increase in the level of logical masking of the circuit.


Author(s):  
P.S. Gromova ◽  
◽  
A.S. Tararaksin ◽  
A.S. Kolosova ◽  
D.V. Boychenko ◽  
...  

Author(s):  
A. S. Puzanov ◽  
V. V. Bibikova ◽  
I. Yu. Zabavichev ◽  
E. S. Obolenskaya ◽  
E. A. Tarasova ◽  
...  

2007 ◽  
Vol 16 (04) ◽  
pp. 1205-1220 ◽  
Author(s):  
TH. HABERER

Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.


Sign in / Sign up

Export Citation Format

Share Document