scholarly journals Assessment of fog and rain induced-attenuation on terrestrial FSO links

Author(s):  
M. O. Ajewole ◽  
P. A. Owolawi ◽  
J. S. Ojo ◽  
R. M. Adetunji

Launching into the next generation of wireless communication network (5G network) requires secure highdata rate, high speed and huge bandwidth links. With the tremendous increase in broadband users, the existingcommunication systems such as radio frequency (RF) and microwave links cannot meet up with the challenges due totheir link interference and low bandwidth. A current technology that promises such requirements and more is FreeSpace Optical (FSO) communication. The FSO basically involves the transmission of signal-modulated opticalradiation from a transmitter to a receiver through the atmosphere or outer space. It is designed to complement thetraditional fibre optical communication links. However, location-variant atmospheric channel degrades the qualityand performance of an FSO system under severe atmospheric conditions. This paper attempts to assess both fog- andrain-induced attenuation on the performance of FSO link in a terrestrial terrain using measured visibility and rainrate data at Akure, Nigeria. 5-year (2012-2016) archived visibility data and measured rain rate data of 1-minuteintegration time obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, FederalUniversity of Technology, Akure respectively, were used to compute the fog- and rain-induced specific attenuationsusing Kruse and Carboneur models. The performance of the FSO system was analyzed through link margin by usingthe parameters of a commercial optical transceiver, Terescope 5000. Findings from this work will be useful for FSOsystem design in the area.

Author(s):  
Ajewole , M. O. ◽  
Owolawi , P. A. ◽  
Adetunji , R. M.

Notice of Retraction-----------------------------------------------------------------------After careful and considered review of the content of this paper by a duly constituted expert committee, this paper has been found to be in violation of APTIKOM's Publication Principles.We hereby retract the content of this paper. Reasonable effort should be made to remove all past references to this paper.The presenting author of this paper has the option to appeal this decision by contacting ij.aptikom@gmail.com.-----------------------------------------------------------------------  Launching into the next generation of wireless communication network (5G network) requires secure high data rate, high speed and huge bandwidth links. With the tremendous increase in broadband users, the existing communication systems such as radio frequency (RF) and microwave links cannot meet up with the challenges due to their link interference and low bandwidth. A current technology that promises such requirements and more is Free Space Optical (FSO) communication. The FSO basically involves the transmission of signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. It is designed to complement the traditional fibre optical communication links. However, location-variant atmospheric channel degrades the quality and performance of an FSO system under severe atmospheric conditions. This paper attempts to assess both fog- and rain-induced attenuation on the performance of FSO link in a terrestrial terrain using measured visibility and rain rate data at Akure, Nigeria. 5-year (2012-2016) archived visibility data and measured rain rate data of 1-minute integration time obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, Federal University of Technology, Akure respectively, were used to compute the fog- and rain-induced specific attenuations using Kruse and Carboneur models. The performance of the FSO system was analyzed through link margin by using the parameters of a commercial optical transceiver, Terescope 5000. Findings from this work will be useful for FSO system design in the area.


Author(s):  
M. O. Ajewole

 Launching into the next generation of wireless communication network (5G network) requires secure high data rate, high speed and huge bandwidth links. With the tremendous increase in broadband users, the existing communication systems such as radio frequency (RF) and microwave links cannot meet up with the challenges due to their link interference and low bandwidth. A current technology that promises such requirements and more is Free Space Optical (FSO) communication. The FSO basically involves the transmission of signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. It is designed to complement the traditional fibre optical communication links. However, location-variant atmospheric channel degrades the quality and performance of an FSO system under severe atmospheric conditions. This paper attempts to assess both fog- and rain-induced attenuation on the performance of FSO link in a terrestrial terrain using measured visibility and rain rate data at Akure, Nigeria. 5-year (2012-2016) archived visibility data and measured rain rate data of 1-minute integration time obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, Federal University of Technology, Akure respectively, were used to compute the fog- and rain-induced specific attenuations using Kruse and Carboneur models. The performance of the FSO system was analyzed through link margin by using the parameters of a commercial optical transceiver, Terescope 5000. Findings from this work will be useful for FSO system design in the area.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Festus Idowu Oluwajobi ◽  
Nguyen Dong-Nhat ◽  
Amin Malekmohammadi

AbstractIn this paper, the performance of a novel multilevel signaling based on Manchester code namely four-level Manchester Coding (4-MC) technique is investigated for next generation high-speed optical fiber communication links. The performance of 4-MC is studied and compared with conventional Manchester modulation and four-level pulse amplitude modulation (4-PAM) formats in terms of receiver sensitivity, spectral efficiency and dispersion tolerance at the bit rate of 40 Gb/s. The bit error rate (BER) calculation model for the proposed multilevel scheme has also been developed. The calculated receiver sensitivity and the chromatic dispersion tolerance at the BER of 10–9 of the proposed scheme are −22 dBm and 67.5 ps/nm, respectively. It is observed that, 4-MC scheme is superior in comparison to 4-PAM by 3.5 dB in terms of receiver sensitivity in back-to-back scenario. Therefore, the proposed scheme can be considered as an alternative to current 4-PAM system.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


1999 ◽  
Author(s):  
Kyle B. Miller ◽  
Tim O'Connor ◽  
Donald A. Thompson ◽  
John Rizo ◽  
Robert W. Kaliski

1994 ◽  
Vol 13 (2) ◽  
pp. 39-47
Author(s):  
Min Liang ◽  
Toshiya Kitamura ◽  
Katsushi Matsubayashi ◽  
Toshifumi Kosaka ◽  
Tatsuo Maeda ◽  
...  

A pressure wave occurs at the instant when a high speed train enters into a long tunnel. The wave propagates downstream to the tunnel exit and low frequency noise is radiated from the exit to outer space. The low frequency noise causes a lot of problems1 to the residents living near the exit and has a close relation with the pressure gradient of the pressure wave. To attenuate the low frequency noise, an active cancellation system rather than a passive one is developed. This research uses a model tunnel to examine the characteristic of the pressure wave and investigates the possibility to reduce the low frequency noise by reducing the pressure wave gradient with active cancellation.


Author(s):  
Joseph Sunday Ojo ◽  
Owolawi P. A. ◽  
Ajewole M. O. ◽  
Adetunji R. M.

 Reliable broadband communication requires secure high data rate and bandwidth links. With the observed increase in broadband users, known communication systems such as RF and microwave links cannot promise such requirements due to link interference and low bandwidth. A current communication system that promises such requirements and more is Free Space Optical (FSO) communication. This system basically involves the transmission of signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. However, location-variant atmospheric channel degrades the performance of an FSO system under severe atmospheric conditions, thus necessitating local atmospheric attenuation studies. This paper presents the characterization of both fog- and rain-induced attenuation and the performance of an FSO system in a terrestrial terrain at Akure, Nigeria. One-year archived visibility data and in-situ measured 1-minute integration time rain rate data obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, Federal University of Technology, Akure were used to compute the fog- and rain-induced specific attenuations using Kruse model and Carboneur model respectively. The performance of the FSO system is analyzed through link margin by using the parameters of a commercial optical transceiver, Terescope 5000.


2019 ◽  
Vol 43 (5) ◽  
pp. 803-809
Author(s):  
М.P. Kalaev ◽  
А.М. Telegin ◽  
K.E. Voronov ◽  
Jiang Lixiang ◽  
Jiao Jilong

The paper describes a DF-OPTICS device that the present authors designed for the experimental study of changes in the optical properties of a glass whose surface is exposed to high-speed flows of micron-sized dust particles. The device allows the scattering indicatrix and the spectral transmittance to be automatically measured at each point of the sample with a 0.5-mm increment. Advantages of the developed device include small dimensions and the ability to work in vacuum, allowing it to be used in an accelerator chamber to simulate outer space factors. Experimental results for the K-8 glass put in a microparticle accelerator and bombarded by an aluminum powder PAP-1 with a characteristic size of 1-3 µm and speeds of 2-8 km / s are presented. The device makes it possible to measure the change of the spectral transmittance of transparent materials in the UV and RGB regions with an accuracy of 0.005%, which exceeds the sensitivity of some known spectrophotometers.


Author(s):  
H. M. Park ◽  
M. A. Kim ◽  
J. Im

Severe weathers such as heavy rainfall, floods, strong wind, and lightning are closely related with the strong convection activities of atmosphere. Overshooting tops sometimes occur by deep convection above tropopause, penetrating into the lower stratosphere. Due to its high potential energy, the detection of OT is crucial to understand the climatic phenomena. Satellite images are useful to detect the dynamics of atmospheric conditions using cloud observation. This study used machine learning methods for extracting OTs. The reference cases were built using CloudSat, CALIPSO, and Numerical Weather Prediction (NWP) data with Himawari-8 imagery. As reference cases, 11 OT events were detected. The aim of this study is the investigation of relationship between OTs cases and the occurrences of heavy rainfall. For investigation of OT effects, TRMM daily rain rate data (mm/hr) were collected and averaged at 25 km intervals until 250km from the center of OT cases. As the result, precipitation rate clearly coincides with the distance from the center of OT occurrence.


Sign in / Sign up

Export Citation Format

Share Document