scholarly journals Assessment of FOG and Rain Induced-Attenuation on Terrestrial FSO Links

Author(s):  
Ajewole , M. O. ◽  
Owolawi , P. A. ◽  
Adetunji , R. M.

Notice of Retraction-----------------------------------------------------------------------After careful and considered review of the content of this paper by a duly constituted expert committee, this paper has been found to be in violation of APTIKOM's Publication Principles.We hereby retract the content of this paper. Reasonable effort should be made to remove all past references to this paper.The presenting author of this paper has the option to appeal this decision by contacting ij.aptikom@gmail.com.-----------------------------------------------------------------------  Launching into the next generation of wireless communication network (5G network) requires secure high data rate, high speed and huge bandwidth links. With the tremendous increase in broadband users, the existing communication systems such as radio frequency (RF) and microwave links cannot meet up with the challenges due to their link interference and low bandwidth. A current technology that promises such requirements and more is Free Space Optical (FSO) communication. The FSO basically involves the transmission of signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. It is designed to complement the traditional fibre optical communication links. However, location-variant atmospheric channel degrades the quality and performance of an FSO system under severe atmospheric conditions. This paper attempts to assess both fog- and rain-induced attenuation on the performance of FSO link in a terrestrial terrain using measured visibility and rain rate data at Akure, Nigeria. 5-year (2012-2016) archived visibility data and measured rain rate data of 1-minute integration time obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, Federal University of Technology, Akure respectively, were used to compute the fog- and rain-induced specific attenuations using Kruse and Carboneur models. The performance of the FSO system was analyzed through link margin by using the parameters of a commercial optical transceiver, Terescope 5000. Findings from this work will be useful for FSO system design in the area.

Author(s):  
M. O. Ajewole

 Launching into the next generation of wireless communication network (5G network) requires secure high data rate, high speed and huge bandwidth links. With the tremendous increase in broadband users, the existing communication systems such as radio frequency (RF) and microwave links cannot meet up with the challenges due to their link interference and low bandwidth. A current technology that promises such requirements and more is Free Space Optical (FSO) communication. The FSO basically involves the transmission of signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. It is designed to complement the traditional fibre optical communication links. However, location-variant atmospheric channel degrades the quality and performance of an FSO system under severe atmospheric conditions. This paper attempts to assess both fog- and rain-induced attenuation on the performance of FSO link in a terrestrial terrain using measured visibility and rain rate data at Akure, Nigeria. 5-year (2012-2016) archived visibility data and measured rain rate data of 1-minute integration time obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, Federal University of Technology, Akure respectively, were used to compute the fog- and rain-induced specific attenuations using Kruse and Carboneur models. The performance of the FSO system was analyzed through link margin by using the parameters of a commercial optical transceiver, Terescope 5000. Findings from this work will be useful for FSO system design in the area.


Author(s):  
Joseph Sunday Ojo ◽  
Owolawi P. A. ◽  
Ajewole M. O. ◽  
Adetunji R. M.

 Reliable broadband communication requires secure high data rate and bandwidth links. With the observed increase in broadband users, known communication systems such as RF and microwave links cannot promise such requirements due to link interference and low bandwidth. A current communication system that promises such requirements and more is Free Space Optical (FSO) communication. This system basically involves the transmission of signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. However, location-variant atmospheric channel degrades the performance of an FSO system under severe atmospheric conditions, thus necessitating local atmospheric attenuation studies. This paper presents the characterization of both fog- and rain-induced attenuation and the performance of an FSO system in a terrestrial terrain at Akure, Nigeria. One-year archived visibility data and in-situ measured 1-minute integration time rain rate data obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, Federal University of Technology, Akure were used to compute the fog- and rain-induced specific attenuations using Kruse model and Carboneur model respectively. The performance of the FSO system is analyzed through link margin by using the parameters of a commercial optical transceiver, Terescope 5000.


Author(s):  
M. O. Ajewole ◽  
P. A. Owolawi ◽  
J. S. Ojo ◽  
R. M. Adetunji

Launching into the next generation of wireless communication network (5G network) requires secure highdata rate, high speed and huge bandwidth links. With the tremendous increase in broadband users, the existingcommunication systems such as radio frequency (RF) and microwave links cannot meet up with the challenges due totheir link interference and low bandwidth. A current technology that promises such requirements and more is FreeSpace Optical (FSO) communication. The FSO basically involves the transmission of signal-modulated opticalradiation from a transmitter to a receiver through the atmosphere or outer space. It is designed to complement thetraditional fibre optical communication links. However, location-variant atmospheric channel degrades the qualityand performance of an FSO system under severe atmospheric conditions. This paper attempts to assess both fog- andrain-induced attenuation on the performance of FSO link in a terrestrial terrain using measured visibility and rainrate data at Akure, Nigeria. 5-year (2012-2016) archived visibility data and measured rain rate data of 1-minuteintegration time obtained from Nigerian Meteorological Agency (NIMET) and the Department of Physics, FederalUniversity of Technology, Akure respectively, were used to compute the fog- and rain-induced specific attenuationsusing Kruse and Carboneur models. The performance of the FSO system was analyzed through link margin by usingthe parameters of a commercial optical transceiver, Terescope 5000. Findings from this work will be useful for FSOsystem design in the area.


2020 ◽  
Vol 4 (3) ◽  
pp. 125-134
Author(s):  
Ajewole M. O ◽  
Owolawi P. A ◽  
Ojo J. S ◽  
Adetunji R. M.

Reliable broadband communication requires secure high data rate and bandwidth links. With the observedincrease in broadband users, known communication systems such as RF and microwave links cannot promise suchrequirements due to link interference and low bandwidth. A current communication system that promises suchrequirements and more is Free Space Optical (FSO) communication. This system basically involves the transmissionof signal-modulated optical radiation from a transmitter to a receiver through the atmosphere or outer space. However,location-variant atmospheric channel degrades the performance of an FSO system under severe atmosphericconditions, thus necessitating local atmospheric attenuation studies.This paper presents the characterization of both fog- and rain-induced attenuation and the performance ofan FSO system in a terrestrial terrain at Akure, Nigeria. One-year archived visibility data and in-situ measured 1-minute integration time rain rate data obtained from Nigerian Meteorological Agency (NIMET) and the Departmentof Physics, Federal University of Technology, Akure were used to compute the fog- and rain-induced specificattenuations using Kruse model and Carboneur model respectively. The performance of the FSO system is analyzedthrough link margin by using the parameters of a commercial optical transceiver, Terescope 5000.


2020 ◽  
Vol 12 (11) ◽  
pp. 179
Author(s):  
Magdalena Garlinska ◽  
Agnieszka Pregowska ◽  
Karol Masztalerz ◽  
Magdalena Osial

Fast communication is of high importance. Recently, increased data demand and crowded radio frequency spectrum have become crucial issues. Free-Space Optical Communication (FSOC) has diametrically changed the way people exchange information. As an alternative to wire communication systems, it allows efficient voice, video, and data transmission using a medium like air. Due to its large bandwidth, FSOC can be used in various applications and has therefore become an important part of our everyday life. The main advantages of FSOC are a high speed, cost savings, compact structures, low power, energy efficiency, a maximal transfer capacity, and applicability. The rapid development of the high-speed connection technology allows one to reduce the repair downtime and gives the ability to quickly establish a backup network in an emergency. Unfortunately, FSOC is susceptible to disruption due to atmospheric conditions or direct sunlight. Here, we briefly discuss Free-Space Optical Communication from mirrors and optical telegraphs to modern wireless systems and outline the future development directions of optical communication.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Yawar Wani ◽  
Hitesh Pathak ◽  
Karamjit Kaur ◽  
Anil Kumar

AbstractFree space optical communication systems (FSO’s) have surfaced as admired means of communication in the past few years. High speed of operation, low bandwidth requirements and system reliability are the major factors responsible for their wide range of applications. These communication systems use air as a medium of transmission. Since there is no component like fiber or cable, but air is only medium, the variations in atmospheric conditions play a vital role in performance of these networks. The reason behind is that the conditions like presence of humidity, haze, snowfall, rain, dust or smoke changes the attenuation coefficient of medium. The raised attenuation levels results in increased losses and need to be carefully monitored. The present work analyzes the influence of rain on the performance of FSO network in terms of quality of transmission. The paper discusses the impact of rainfall on attenuation coefficient of air. Then impact of this attenuation on network transmission is presented in terms of BER and Q-factor. In order to demonstrate the impact, BER and Q-value is calculated for 10 Gbps FSO link for clear weather and rainfall conditions.


Author(s):  
Islam Md Rafiqul ◽  
Md Moktarul Alam ◽  
Ali Kodhim Lwas ◽  
Sarah Yasmin Mohamad

Attenuation due to rain is an important constraint in microwave radio link design especially at frequencies above 10 GHz. It restricts the path length of radio communication systems and limits the use of higher frequencies for line-of-sight microwave links and satellite communications. In order to predict the attenuation due to rain accurately rainfall intensity is required with 1-minute integration time. Rainfall is a meteorological phenomenon with complex structure due to its variability in space, duration and occurrence frequency, particularly in tropical and equatorial regions. Since, the statistical distribution of rain attenuation is obtained from the rain rate distribution for the region considered, it should be noted that the accuracy of the rain rate measurement affects the accuracy of the attenuation estimation. This paper presents rain intensity with 1-minute integration time measured for 6 years in Malaysia, it’s distribution, comparison with other prediction models and impact on high frequency microwave links.


2020 ◽  
Vol 116 (1) ◽  
pp. 475-490 ◽  
Author(s):  
Tobias Siegel ◽  
Shun-Ping Chen

AbstractDue to the increasing demand for higher bandwidth in modern communication systems, conventional networks are continuously expanded with new technologies to improve coverage. Free space optical communications (FSOC) shows some significant advantages concerning system setup time in comparison with the classical fiber optical systems on one hand, substantial spectral bandwidth and performances in comparison with the wireless systems under certain conditions on the other hand. This makes this technology not only a reasonable extension for metropolitan area networks but also provides the capability to set up a network after an outage in case of natural disaster quickly. But transmitting data by using FSOC involves some limiting factors that have to be considered prior to each installation. Since the atmospheric channel is not static, the influence of changing weather conditions or industrial smog have a significant impact on the available bitrate. A simulation platform is developed and presented in this paper for investigation of FSOC considering these circumstances. Regarding the atmospheric channel, turbulence, distance-dependent beam divergence, and applied modulation schemes, a general overview of the capabilities is presented and discussed. The insight of this paper should help to make a decision under which preconditions either the FSOC provides a meaningful application possibility, or the limiting factors become too crucial and other technologies must be considered.


2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Florence Rashidi ◽  
Jing He ◽  
Lin Chen

AbstractThe challenge in the free-space optical (FSO) communication is the propagation of optical signal through different atmospheric conditions such as rain, snow and fog. In this paper, an orthogonal frequency-division multiplexing technique (OFDM) is proposed in the FSO communication system. Meanwhile, considering the rain attenuation models based on Marshal & Palmer and Carbonneau models, the performance of FSO communication system based on the OFDM is evaluated under the heavy-rain condition in Changsha, China. The simulation results show that, under a heavy-rainfall condition of 106.18 mm/h, with an attenuation factor of 7 dB/km based on the Marshal & Palmer model, the bit rate of 2.5 and 4.0 Gbps data can be transmitted over the FSO channels of 1.6 and 1.3 km, respectively, and the bit error rate of less than 1E − 4 can be achieved. In addition, the effect on rain attenuation over the FSO communication system based on the Marshal & Palmer model is less than that of the Carbonneau model.


2019 ◽  
Vol 40 (4) ◽  
pp. 429-433 ◽  
Author(s):  
Kamal Kishore Upadhyay ◽  
Saumya Srivastava ◽  
N. K Shukla ◽  
Sushank Chaudhary

Abstract Free space optical (FSO) communication systems are gaining high popularity from the last decade due to its various advantages such as no license spectrum, low-cost implementation etc. In this work, 160 Gbps data is transmitted over 8 km FSO link by adopting alternate mark inversion (AMI), wavelength division multiplexing (WDM) and polarization division multiplexing (PDM) schemes. The results are reported in terms of Q factor, bit error rate, signal to noise ratio, total received power and eye diagrams.


Sign in / Sign up

Export Citation Format

Share Document