scholarly journals RESERVOIRS OF DIVERSION HYDRO POWER PLANTS AND THE APPLICATION OF ALLUVIUM FOR THE PRODUCTION OF BUILDING MATERIALS

Author(s):  
М. Н. Кокоев

В горных реках Северного Кавказа расход воды в паводок увеличивается в десятки раз. Часто в горных условиях технически проще и дешевле построить не плотинную станцию с большим водохранилищем, а деривационную ГЭС с небольшим водохранилищем или с бассейном суточного регулирования. Горные реки несут большое количество песка и ила. Во время паводков вода переносит и мелкие камни, и гальку. Если не принимать мер для очистки от речных наносов водохранилищ, то через несколько лет полезный объем водохранилищ будет исчерпан. В статье рассматривается один из способов поддержания водохранилищ и бассейнов суточного регулирования в рабочем состоянии. Предложено речные наносы (аллювий) регулярно извлекать из водохранилищ, обрабатывать и использовать как сырье для производства строительных песчано-гравийных смесей и щебня. Есть большая потребность в этих материалах при строительстве автомобильных дорог, в промышленном и гражданском строительстве. Одновременно можно использовать тонкие фракции аллювия в виде ила, глины и тонкого песка в качестве основы для приготовления почвенного субстрата с целью применения его для улучшения пойменных земель. Обсуждаются вопросы организации при водохранилищах каскада ГЭС на горных реках механизированных участков по утилизации донных отложений. In the mountain rivers of the North Caucasus, the water discharge during a flood increases tenfold. Often, in mountainous conditions, it is technically easier and cheaper to build a derivation hydroelectric power station with a small reservoir or with a daily regulation pool than a dam station with a large reservoir. Mountain rivers carry large amounts of sand and silt. During floods, the water carries lots of small stones and pebbles. If no measures are taken to cleanse reservoirs from river sediments, their useful volume would be exhausted in a few years of operation. The article discusses one of the ways to maintain reservoirs and basins of daily regulation in working order. It is proposed that river sediments (alluvium) be regularly removed from reservoirs, processed and used as raw materials for the production of construction sand and gravel mixtures and crushed stone. The demand for these materials in the construction of highways, in industrial and civil construction is high. At the same time, it is possible to use fine fractions of alluvium in the form of silt, clay and fine sand as a basis for preparing a soil substrate to improve floodplain lands. The issues of organizing mechanized teams for utilization of bottom sediments at reservoirs of a cascade of hydroelectric power stations on mountain rivers are discussed.

Author(s):  

This article considers issues of regulating the non-metallic building materials extraction in the lower reaches of large hydroelectric power plants. The problem is quite urgent when a large city is located in the lower tail of a hydroelectric power plant and the process of extraction of non-metallic building materials is superimposed on the rather complicated issues of interaction with other water users. The article employs the technique of mutual overlap of bathymetric surveys for the previous periods combined with the analysis of the declared volumes of extraction of non-metallic building materials. A simulating hydrodynamic model of the Votkinsk reservoir has been made, with taking into account the data on the fractional composition of bottom sediments. During the development of the model, we used the software products HEC-RAS v.4.1 and SMS v.11.1. The use of onedimensional and two-dimensional models made it possible to simplify calculations without significant loss of accuracy of calculations. Based on these models, a deformation of the bed was calculated under the standard conditions of the hydrological regime of the Kama and Votkinsk reservoirs. The outcome of the work is recommendations on the allocation of sites in the lower tail of the Kamskaya HPP, where the extraction of non-metallic building materials is not recommended, the areas where production is possible subject to a number of conditions and restrictions concerning the volume of production and areas where production is possible without restrictions.


2021 ◽  
pp. 53-64
Author(s):  
Zuffa Anisa ◽  
Anggun Apprianda ◽  
Herta Novianto ◽  
Indriyani Rachman

Nowadays, direct media use in learning energy is rarely found. Therefore, the authors intended to design a mini micro-hydro power plant (MHPP) in order to give direct experiences to students. This study generally aims to develop a mini MHPP consisting of equipment design, component selection, and the MHPP assembly. A test on discharge, heights, and produced power is then conducted. The data acquired are then analyzed in terms of either Pteotirik or Preal power using a predetermined equation. An analysis to the factors influencing the P values is then carried out. The power input of  resulted from the water discharge management is 35.64 mW, while that of the power output  is 9,61 mW. The efficiency of the MHPP set is by 26.96% which is considered quite low due to such factors as turbine blades, penstock pipes, generators, and the shift from water potential energy to other types of energies which is inevitable. It is expected that the developed mini MHPP is applicable as practicum learning media giving a lot of such learning experiences to students as to identify how hydroelectric power plant is, how the water energy shifts into electric energy, how high the electricity produced is, and to analyze factors influencing how high and low the electricity produced by a power plant.


2018 ◽  
Vol 245 ◽  
pp. 15002 ◽  
Author(s):  
Roman Davydov ◽  
Valery Antonov ◽  
Dmitry Molodtsov ◽  
Alexey Cheremisin ◽  
Vadim Korablev

The rapid spread of storm floods over large areas requires flood management throughout the river basin by the creation an innovative system of flood control facilities of various functional purposes distributed in the area. The central part of the system is the hydro system with hydro power plant. In addition, the flood control facilities on the side tributaries with self-regulating reservoir are included in the system. To assess the effect of controlling extreme water discharges by flood control facilities, it is necessary to develop special mathematical models reflecting the specifics of their operation. Unified mathematical models of the operation modes of a hydro complex with hydroelectric power station and flood control facility are created. They are implemented in a computer program that provides the ability to determine the main parameters and operating characteristics of hydro systems when performing multivariate calculations in a wide range of initial data. This makes possible specifying the parameters and operation modes of each hydro system with the current economic and environmental requirements, to assess the energy-economic and environmental consequences in the operation of the system of flood control facilities distributed in the area. The article analyses the results of the extreme water discharge’s regulation by the hydro system on the main river and flood control facilities on the side tributaries, considering environmental requirements.


2015 ◽  
Vol 806 ◽  
pp. 64-73
Author(s):  
Aleksandar Vujović ◽  
Zdravko Krivokapić ◽  
Jelena Jovanović

The paper is a result of research at the Mechanical Engineering Faculty in Podgorica and represents the aspiration of authors to combine scientific and technical experience in order to achieve improvement in a real system. It is a complex system of lock chambers in a hydroelectric power plant. Based on a detailed analysis of the initial state, through the process modeling of complex real system, the authors identify possible areas where the intervening and applying modern systems with greater flexibility is necessary to achieve higher levels of automation. Also, proposed in the paper are measures for ensuring the security of information that rise system performance to a higher level compared to the competition and create an advantage in the global market.


2021 ◽  
Vol 18 (3) ◽  
pp. 410-420
Author(s):  
Vladimir N. KAVKAZKY ◽  
◽  
Yana V. MEL’NIK ◽  
Alexey P. LEIKIN ◽  
Andrey V. BENIN ◽  
...  

Objective: Chirkeyskaya HPP is by far the most powerful hydroelectric power plant in the North Caucasus with the highest arched dam in Russia and the second highest dam in the country after the Sayano-Shushenskaya HPP. This explains why it is called the pearl of the Caucasus. Methods: For the operation and maintenance of this unique structure, a large-scale complex of underground structures for various purposes was built, the technical condition of which must be constantly monitored. To carry out work on the survey of underground structures, the management of the design and survey institute of JSC “Lengidroproekt” decided to attract specialists from the Department of Tunnels and Subways and the Test Center “Strength” of Emperor Alexander I Petersburg State Transport University. The work was successfully carried out at the end of 2015. Results: The safety of underground structures was objectively assessed. Recommendations for the repair and further comprehensive reconstruction of the Chirkeyskaya HPP have been developed. Practical importance: Carry out work on the survey of underground structures of Chirkeyskaya HPP is allowes elaborate of complex measures on safety from Chirkeyskaya HPP.


Author(s):  
Petro Lezhnyuk ◽  
Iryna Hunko ◽  
Juliya Malogulko ◽  
Iryna Kotylko ◽  
Lіudmyla Krot

Urgency of the research. Current trends of distributed generation development in Ukraine indicate a rapid generation in-crease from renewable energy plants. Most developed countries gradually refuse from the fossil fuels use and invest more and more to the “green” energy. Therefore, there is a need for a detailed study of the operation conditions of distributed energy sources due to their instability, as well as the processes that arise in distribution electric networks with diverse types of distributed energy sources. Target setting. In the producing process of power energy by distributed energy sources due to the increase in their num-ber, there are situations where several renewable sources of energy operate to only one system of buses. Thus, such distributive networks acquire the features of a local power system, which complicates the control process of such systems, and also there is a problem with the electricity supply of consumers. Actual scientific researches and issues analysis. The analysis of publications suggests that in literature more attention is paid to studying the operating modes of solar power plants, or small hydroelectric power plants. However, almost no attention was paid to the study of their cooperation work. Uninvestigated parts of general matters defining. Only a few works are devoted to the study of the cooperation of the diverce sources of distributed energy sources in the local electrical systems. That is why, their impact on power distribution networks and on the grid in general has not been studied extensively. The research objective. In this article was considered the influence of asynchronous generators on small hydroelectric power plants on the operation modes of distribution electrical networks, and were investigated the processes that are occurring in local power systems with different types of distributed energy sources. The statement of basic materials. Based on the research results, was developed a computer model of a such system in the PS CAD software environment. Two solar stations and one small hydroelectric power station with an asynchronous generator were connected to the power supply. It was shown the simulation of two modes of operation: a joint operation of a small hydroelectric power station, two solar power stations and a power supply center; a joint operation of a small hydroelectric pow-er plant, two solar power stations and a power supply disconnected. Conclusions. As a result of computer simulation, it is shown that by switching on a small hydroelectric power plant with an asynchronous generator in the case of an emergency shutdown of centralized power supply, it is possible to restore the work of solar power plants, and thus partially or completely restore the power supply of consumers.


2021 ◽  
Vol 11 (2) ◽  
pp. 62-66
Author(s):  
Sergey V. EVDOKIMOV ◽  
Alexey A. ROMANOV ◽  
Boris G. IVANOV

The experience of operation of surface emergency gates in ice-breaking conditions at a number of hydroelectric power plants has shown the insuffi cient eff ectiveness of the methods used to combat freezing of structures. The rules for technical operation of spillway dam gates in winter provide for heating of structures by slots, threshold and skin in conjunction with measures to maintain mines before construction. However, measures to heat gates and build mines are not always suffi ciently justifi ed and justifi ed. In order to obtain full-scale data and scientifi c information for the development of recommendations on operating and accounting modes during design, full-scale studies of stresses and defl ections in the load-bearing elements of the watershed gate of the hydroelectric power station were carried out. This article presents the results of fi eld studies in comparison with calculated values. As a result of the studies, information on the static operation of fl at gates in winter conditions is obtained, which is of theoretical and practical interest. The materials can be used to clarify technical operation rules and to clarify regulatory documents for the design of hydromechanical equipment at hydroelectric power stations.


2014 ◽  
Vol 698 ◽  
pp. 785-789
Author(s):  
Yana Panova ◽  
Vladimir Derbenev ◽  
Anastasiya Zhdanovich

This article is devoted to the principles of constructing the decision support information system at the hydroelectric power plants. It’s assumed that the fuzzy sets theory will be used for the representation of the information about the aggregates operating condition parameters. The paper reflects the advantages of such an approach. The calculations were done for the equipment of the low-head (Novosibirskaya HPP, Hydro Power Plant) and high-head (Sayano–Shushenskaya HPP) power plants. The results obtained are intended for solving the HPPs operational control problems.


2020 ◽  
Vol 191 ◽  
pp. 02004
Author(s):  
Alexandra Khalyasmaa ◽  
Stanislav Eroshenko ◽  
Sergey Mitrofanov ◽  
Anastasia Rusina ◽  
Anna Arestova ◽  
...  

The paper presents a simulation model of a hydroelectric power plants chain. The model allows solving the problem of hydro power plants (HPPs) operation mode planning in a unified power system, taking into account the optimization of water resources. The optimal filling and decrease of storage was performed in MATLAB Simulink software. The hydraulic properties of the river flow between the stations and the corresponding time lags in the functioning of the down-river station are taken into account. The model allows continuously monitoring changes in water pressure at hydropower plants and, as a result, uses the family of flow characteristics for various water pressures. The issues of optimizing the participation of hydroelectric power stations in the regimes of large hydrothermal power systems were also raised.


2019 ◽  
Vol 114 ◽  
pp. 01006
Author(s):  
Gleb Mayorov ◽  
Valery Stennikov ◽  
Eugene Barakhtenko

The current technological infrastructure in the electricity, heat, cold, and gas supply, as a rule, is formed and controlled separately by local systems and tasks. The traditionally considered energy systems unite large energy sources, such as hydroelectric power station, combined heat and power plants, boiler plants, and electric and pipeline networks distributed over a large area. New trends in the energy sector necessitate a revision of the principles of construction of energy systems and the creation of integrated energy supply systems. Combining separate different types of systems of different levels into a single integrated system with many coordinated elements can contribute to the implementation of new functionality, the use of more advanced technologies in operation and the active participation of consumers with distributed generation in the energy supply process. For the study of integrated energy supply systems it is proposed to use a multiagent approach, which is one of the promising areas of research for complex systems. This approach is used in many subject areas to study systems that include many elements with complex behavior. Such systems include integrated energy supply systems. The solution of the problem on the basis of the agent approach is developed by a multitude of interrelated agents.


Sign in / Sign up

Export Citation Format

Share Document