scholarly journals Strategi Mitigasi Risiko Produktivitas Pada Proses Assembly Hospital Equipment

2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Andrie Pasca Hendradewa ◽  
Adienta Mustika Ma'arij

The rapid development of technology and industrialization demands an increasing need for strategic planning. One of the strategies needed for a company to remain competitive in the industrialized world is to increase productivity. However, practically several companies still experience difficulties in making efforts to increase productivity so that the productivity achieved is not optimal. The same thing happened at PT. Mega Andalan Kalasan, especially on the Assembly Unit of the Hospital Equipment. Where the productivity achieved cannot be categorized as optimal because it can be seen from the number of non-value added activities that occur in assembly process. Among the products produced, it is known that the Operating Table Manual product has the highest percentage of non-value added activity, which is 30% of the total cycle time. This study aims to identify risks using the Failure Mode and Effect Analysis (FMEA) method and design a mitigation strategy as an initial effort to improve productivity by minimizing non-value added activities. The identification results show that there are 22 risks with moderate severity but high occurrence. Recommendations in the form of implementing better quality control on incoming materials are one of the strategies which capable of mitigating 40% of the risk of existing non value added activities. Adanya perkembangan teknologi dan industrialisasi yang semakin pesat menuntut kebutuhan akan perencanaan strategi semakin meningkat. Salah satu strategi yang dibutuhkan agar sebuah perusahaan dapat tetap bersaing di dunia perindustrian adalah dengan meningkatkan produktivitas. Namun pada penerapannya, beberapa perusahaan masih mengalami kesulitan dalam melakukan upaya peningkatan produktivitas sehingga produktivitas yang dicapai belum optimal. Hal yang serupa terjadi di PT. Mega Andalan Kalasan, khususnya pada lantai kerja Assembly unit Hospital Equipment. Dimana produktivitas yang dicapai belum bisa dikatakan optimal karena terlihat dari banyaknya non value added activity yang terjadi pada proses assembly. Diantara sejumlah produk yang dihasilkan, diketahui bahwa pengerjaan produk Operating Table Manual memiliki persentase non value added activity yang tertinggi yaitu sebanyak 30% dari total waktu siklusnya. Penelitian ini bertujuan untuk mengidentifikasi risiko dengan menggunakan metode Failure Mode and Effect Analysis (FMEA) dan merancang strategi mitigasi sebagai upaya awal untuk memperbaiki produktivitas dengan meminimalisir aktivitas non value added. Hasil identifikasi menunjukkan terdapat 22 risiko dengan tingkat severity sedang namun memiliki occurence yang tinggi. Rekomendasi berupa penerapan quality control yang lebih baik terhadap incoming material menjadi salah satu strategi yang mampu memitigasi 40% risiko aktivitas non value added yang ada.

2020 ◽  
Vol 9 (3) ◽  
pp. 171-176
Author(s):  
Nurul Retno Nurwulan ◽  
Wilcha Anatasya Veronica

A good quality control system is important to be implemented to increase productivity and minimize defects in products. One of the quality control methods is failure mode and effect analysis (FMEA). This study uses the FMEA to identify the causes of the defects and recommend the prevention methods to overcome the causes of the defects in an Indonesian paper mill. The risk priority number (RPN) is calculated by multiplying the severity, occurrence, and detection of the failures that have been determined. Unsymmetrical and tainted products are the most dominant defects in the paper mill. An inappropriate machine setting is the cause of unsymmetrical products with the highest RPN of 343. The second highest RPN is problems with bleaching machines that caused tainted products with an RPN value of 216. This study offers suggestions to Indonesian paper mill to prevent and minimize defective products. 


2020 ◽  
Vol 11 (1) ◽  
pp. 29-38
Author(s):  
Ján Kováč ◽  
Pavol Ťavoda ◽  
Jozef Krilek ◽  
Pavol Harvánek

AbstractThe article deals with the research of operational reliability of forest felling machines by FMEA method (Failure Mode and Effect Analysis). It describes collection of operational data and its analysis. It explains the procedure of realization for the method FMEA in the organization. Harvesters John Deere 1070D in the Company Lesy SR B. Bystrica were chosen for this research. The research was held in real operational conditions. Application of the FMEA method allows flexibility in case of unexpected situations and optimization of human potential abilities. FMEA tool is a tool preventing outages operational reliability and preventive tool for ensuring the maintenance of facilities. The method of information analysis mentioned below is simple ale precise enough for implementation in real working conditions.


2021 ◽  
Vol 331 ◽  
pp. 02010
Author(s):  
Prima Fithri ◽  
Muhammad Rafi ◽  
Pawenary ◽  
A. S. Prabuwono

The increasing development of the industry makes every industry have to compete with other competitors to gain an edge. The advantages of competition are influenced by several factors, one of which is good human resource management. Where if a company has good human resources, it will increase profits indirectly and can increase productivity. This research discusses case studies about the potential dangers of IKM Heppy Bakery’s potential dangers that can harm workers in bread production. The method used is Failure Mode And Effect Analysis (FMEA). Later, the data will be filled and given a rating distinguished into three parts: severity, occurrence, and detection. The data were obtained through questionnaires given to 3 workers at IKM Heppy Bakery and filled in rating values based on the provisions that have been given to the questionnaire. This Value helps determine the Risk Priority Number (RPN) obtained from multiplication between severity, occurrence, and detection. After processing the RPN multiplication data, the highest RPN value was obtained by 193 with the danger factor of the operator overheating and dehydrating due to high temperatures. Furthermore, the calculation of critical Value was obtained by 109. Based on the critical Value obtained seven hazard factors above the critical value, these seven hazard factors need to be improved so that workers do not avoid accidents when conducting the production process.


2018 ◽  
Vol 26 (4) ◽  
pp. 200-206
Author(s):  
Pavol Ťavoda ◽  
Ján Kováč ◽  
Zygmunt Ł Łukaszczyk

Abstract The article deals with the research of operational reliability of forest felling machines with the method FMEA (Failure Mode and Effect Analysis) and its implementation for observed machines in the organization. Forwarders 810D by John Deere were chosen for this research. The research was realized in real operational conditions. Application of the FMEA method allows flexibility in case of unexpected situations and optimization of human potential abilities. FMEA tool is a tool preventing outages operational reliability and preventive tool for ensuring the maintenance of facilities. This paper explores and verifies the operational reliability theory in practical real-world conditions, resulting in a reduction in operating (variable) costs, minimization of failures and readiness and increased performance of observed machines.


2018 ◽  
Vol 2 (Special edition 2) ◽  
pp. 123-132
Author(s):  
Jasminka Bonato ◽  
Martina Badurina ◽  
Julijan Dobrinić

The paper aims at presenting the FMEA method based on the fuzzy technique, representing a new approach to the failure analysis and its effects on the observed system. The FMEA (Failure Mode and Effect Analysis) method has assigned the risks a coefficient i.e. a numerical indicator that very clearly defines the degree of risk. The risk is calculated as a mathematical function of RPN which depends on the effects S, probability O that some case will lead to a failure and to a probability that a failure D can not be detected before its effects are realized. RPN = S O D. The FMEA method, based on the fuzzy logic, makes a more reliable evaluation of the observed system failures possible.


Author(s):  
Kapil Dev Sharma ◽  
Shobhit Srivastava

Failure mode and effect analysis is one of the QS-9000 quality system requirement supplements, with a wide applicability in all industrial fields. FMEA is the inductive failure analysis instruments which can be defined as a methodical group of activities intended to recognize and evaluate the potential failure modes of a product/ process and its effects with an aim to identify actions which could eliminate or reduce the chance of the potential failure before the problem occur. The purpose of this paper is to evaluate the FMEA research and application in the Thermal Power Plant Industry. The research will highlight the application of FMEA method to water tubes (WT) in boilers with an aim to find-out all the major and primary causes of boiler failure and reduce the breakdown for continuous power generation in the plant. Failure Mode and Effect Analysis technique is applied on most critical or serious parts (components) of the plant which having highest Risk Priority Number (RPN). Comparison is made between the quantitative results of FMEA and reliability field data from real tube systems. These results are discussed to establish relationships which are useful for future water tube designs.


2014 ◽  
Vol 657 ◽  
pp. 976-980 ◽  
Author(s):  
Nicoleta Rachieru ◽  
Nadia Belu ◽  
Daniel Constantin Anghel

This research is aimed at utilizing failure mode and effect analysis (FMEA) which is a reliability analysis method applicable to rotary injection pump design. In traditional FMEA, Risk Priority Number (RPN) ranking system is used to evaluate, the risk level of failures to rank failures and to prioritize actions. RPN is obtained by multiplying the scores of three risk factors like the Severity (S), Occurrence (O) and Detection (D) of each failure mode. RPN method can not emphasise the nature of the problem, which is multi-attributable and has a group of experts' opinions. Furthermore, attributes are subjective and have different importance levels. In this paper, a framework is proposed to overcome the shortcomings of the traditional method through the fuzzy set theory. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. We expect that fuzzy FMEA model will assist FMEA team in assess and rank risks more precisely compared with risk assessment model of method.


2018 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Muhamad Bob Anthony

This research was conducted in an international company engaged in iron and steel products manufacturing industries. One of the equipment that is often damaged is a hot roller table machine in the furnace section mill unit. The availability results obtained in hot roller table equipment is 96.571% and is still below the company standard which is set at 98%. Therefore, we need an analysis of the root causes of the problem and search for the best solution to fix the existing problem by applying the method of Failure Mode and Effect Analysis (FMEA). FMEA is a method that can systematically and structurally analyze and identify the consequences of a system or process failure, and also reduce or analyze the probability of failure. The purpose of this study is to identify and analyze the level of damage and its causes with the application of the FMEA method. Based on the pareto diagram the damage to the hot roller table machine, it was found that the highest frequency of damage was in the rotary coupling with a down time percentage of 26.9%. From the FMEA Analysis, two components that have very high RPN values are categorized as potential severit i.e. bearing as the first with an RPN value of 392 and the second is a seal ring with an RPN value of 294. The two components are the main priority for repair of the furnace section. mill, especially for machine and human aspects.


Sign in / Sign up

Export Citation Format

Share Document