scholarly journals INVESTIGATION OF THE METHOD OF INTRODUCING SURFACTANTS INTO THE COMPOSITION OF WATER NON-STICK COATINGS

Author(s):  
T. R. Gilmanshina ◽  
I. E. Illarionov ◽  
E. N. Zhirkov ◽  
T. N. Stepanova

It is shown that the joint activation of graphite and carboxymethyl cellulose provides non-stick coatings with a higher level of properties than when this additive is introduced into the coating composition. The content of carboxymethyl cellulose should not exceed 1 wt. % by weight of graphite.

TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 29-35 ◽  
Author(s):  
PEDRAM FATEHI ◽  
LIYING QIAN ◽  
RATTANA KITITERAKUN ◽  
THIRASAK RIRKSOMBOON ◽  
HUINING XIAO

The application of an oppositely charged dual polymer system is a promising approach to enhance paper strength. In this work, modified chitosan (MCN), a cationic polymer, and carboxymethyl cellulose (CMC), an anionic polymer, were used sequentially to improve paper strength. The adsorption of MCN on cellulose fibers was analyzed via polyelectrolyte titration. The formation of MCN/CMC complex in water and the deposition of this complex on silicon wafers were investigated by means of atomic force microscope and quasi-elastic light scattering techniques. The results showed that paper strength was enhanced slightly with a layer-by-layer assembly of the polymers. However, if the washing stage, which was required for layer-by-layer assembly, was eliminated, the MCN/CMC complex was deposited on fibers more efficiently, and the paper strength was improved more significantly. The significant improvement was attributed to the extra development of fiber bonding, confirmed further by scanning electron microscope observation of the bonding area of fibers treated with or without washing. However, the brightness of papers was somewhat decreased by the deposition of the complex on fibers. Higher paper strength also was achieved using rapid drying rather than air drying.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 641-649
Author(s):  
JOSHUA OMAMBALA ◽  
CARL MCINTYRE

The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compositions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.


2009 ◽  
Vol 40 (2) ◽  
pp. 19-26 ◽  
Author(s):  
Soojung LEE ◽  
Yasutsugu MIWA ◽  
Ryohei NISHIMURA ◽  
Ung-il CHUNG ◽  
Shigeki SUZUKI ◽  
...  

2020 ◽  
Vol 23 (03) ◽  
pp. 33-49
Author(s):  
Ni’matul Mauludiyah ◽  
Devi Ayu Aprillia ◽  
Viddy Agustian Rosyidi ◽  
Lusia Oktora Ruma Kumala Sari

2020 ◽  
pp. 179-181
Author(s):  
A.A. Abrashov A.A. ◽  
E.G. Vinokurov ◽  
M.A. Egupova ◽  
V.D. Skopintsev

The technological (deposition rate, coating composition) and functional (surface roughness, microhardness) characteristics of chemical composite coatings Ni—Cu—P—Cr2O3 obtained from weakly acidic and slightly alkaline solutions are compared. It is shown that coatings deposited from slightly alkaline solution contain slightly less phosphorus and chromium oxide than coatings deposited from weakly acid solution (2...3 % wt. phosphorus and up to 3.4 % wt. chromium oxide), formed at higher rate (24...25 microns per 1 hour of deposition at temperature of 80 °C), are characte rized by lower roughness and increased microhardness. The Vickers microhardness at 0.05 N load of composite coatings obtained from slightly alkaline solution and heat-treated at 400 °C for 1 hour is 13.5...15.2 GPa, which is higher than values for coatings deposited made of weakly acidic solution. The maximum microhardness of coatings is achieved at concentration 20 g/l of Cr2O3 particles. The technology of chemical deposition of Ni—Cu—P—Cr2O3 coatings formed in slightly alkaline solution is promising for obtaining of materials with increased hardness and wear resistance.


Polymers ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 605 ◽  
Author(s):  
Jungmin Lee ◽  
Soohee Park ◽  
Hyun-gyoo Roh ◽  
Seungtaek Oh ◽  
Sunghoon Kim ◽  
...  

2014 ◽  
Vol 38 (8) ◽  
pp. 3953 ◽  
Author(s):  
Li Hua ◽  
Jizhong Chen ◽  
Chen Chen ◽  
Wenwen Zhu ◽  
Yinyin Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document