scholarly journals Karakteristik Beton Mutu 16,9 MPa Mengunakan 1% Kawat Bendrat dengan Variasi Panjang

2021 ◽  
Vol 5 (3) ◽  
pp. 317-329
Author(s):  
Tri Mulyono

The research aimed to determine the characteristics of the 16.9 MPa, using steel fibers (bendrat wire) with lenght variations in the concrete mixture 1% by volume-weight of the concrete. This research is an explanatory research with research questions are: how significant is the difference, and what are the characteristics. The total population of each treatment is 12 specimens with a sample of 5 specimens for compressive strength and 4 specimens for split tensile strength for each given treatment which is a random sample, specifically: A (reference concrete); B, C, D, and E for concrete with length variation an expressed as L/D fiber ratio of 50; 62.5; 75 and 87.5. The concrete material meets the standard. At the level of significance 0,05 indicates that the test data are normal distribution and uniform and the characteristics of concrete between reference concrete and concrete fiber different variance values. The unit weight between the reference concrete and the fiber concrete is slightly identical. The slump value decreases with increasing L/D fiber ratio. The concrete characteristics increase up to an L/D fiber ratio of 75. It generates a compressive strength of 19.47% of the design and 16.60% of the reference concrete (17,316 MPa). The split tensile strength is 2,753 MPa (22.29% higher than the design 2,251 MPa) and 18.83% of the reference concrete (2,317 MPa). The flexural strength was 3.638 MPa (18.01% of the 3.083 MPa design) and 1.97% of the reference concrete (3.144 MPa).

2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


2021 ◽  
Vol 878 (1) ◽  
pp. 012052
Author(s):  
H Ndruru ◽  
R M Simanjuntak ◽  
S P Tampubolon

Abstract The rigid pavement is a pavement construction in which a concrete slab is used as the top layer, which is located above the foundation or directly above the subgrade, without or with an asphalt surface layer. One type of rigid pavement used in Indonesia is rigid pavement without using reinforcement which is usually used in areas with low traffic or residential areas. Pavement without using reinforcement is the small split tensile strength so that the part of the plate will experience cracks due to stresses that cannot be avoided from traffic loads. Therefore, it is necessary to have reinforcement on the concrete slab so that the cracks do not extend. In this research, the use of copper fiber waste from electronic cables as a substitute solution for reinforcement to be used as a mixture in concrete. The experiments were carried out using fiber with variations of 0%, 0.5%, 1%, and 1.5% of the total weight of concrete mixture material and then tested at 28 days of concrete age. This research showed the variation of fiber weight until 1,5% increase the split tensile strength up to 32,46% and the compressive strength up to 9,16%.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 625 ◽  
Author(s):  
Sherif Yehia ◽  
Akmal Abdelfatah ◽  
Doaa Mansour

In this paper, concrete mixes utilizing two sizes of natural aggregate and two sources of lightweight and recycled aggregates were used to investigate the effect of aggregate type and specimen size and shape on the compressive strength of concrete. In addition, samples from ready-mix concrete producers with different strengths were evaluated using standard size cylinders and cubes. Results were obtained on the 7th, 28th, and 90th day. In addition, flexural strength, split tension, and modulus of elasticity were evaluated on the 28th and 90th day. Statistical analyses were conducted to examine the significance of the difference between the compressive strength values for each two mixes using tests of hypotheses. Moreover, other mechanical properties as a function of compressive strength were discussed and compared to those predicated by the American Concrete Institute (ACI) specifications. Results indicate specimen shape has a noticeable effect on the compressive strength as the Cylinder/Cube ratio on the 90th day was ranging between 0.781 and 0.929. The concrete compressive strength and modulus of elasticity were significantly affected by the aggregate type. The flexural strength and split tensile strength were less affected by the aggregate type, which was also confirmed by the values predicted with the ACI equations.


2020 ◽  
Vol 170 ◽  
pp. 06018
Author(s):  
Sandeep L. Hake ◽  
S. S. Shinde ◽  
Piyush K. Bhandari ◽  
P. R. Awasarmal ◽  
B. D. Kanawade

Self Compacting Concrete (SCC) is a specially developed concrete for concreting under extreme condition of inaccessibility from heights. It is capable to flow under influence of its own weight. It could be used when encountered with dense reinforcement and complex structural design. Problem of segregation as well as bleeding is eliminated and vibration is not required for compaction. As concrete is strong in compression and weak in tension. Hence to make it strong in tension, discontinuous Anti-Crack high dispersion glass fibers are added. SCC mix prepared with addition of discontinuous glass fibers is called as Glass Fiber reinforced Self Compacting Concrete (GFRSCC). In this paper an experimental study has been carried out to check the effect of Anti-Crack high dispersion glass fibers on the compressive strength, split tensile strength and flexural strength of SCC. The result show that, as compared to the Normal SCC, the compressive strength of GFRSCC increases by 2.80% and 12.42%, the split tensile strength of GFRSCC increases by 4.47% and 25.12% and the flexural strength of SCC increases by 6.57% and 14.34% when the Cem-FIL Anti-Crack HD glass fibers were added as 0.25% and 0.50% respectively by the weight of total cementitious material contents. The addition of 0.25% Cem-FIL Anti-Crack HD glass fibers to SCC has not much affect on the workability of Normal SCC. Whereas, addition of 0.50% Cem-FIL Anti-Crack HD glass fibers reduces the workability of SCC.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
J. Rex ◽  
B. Kameshwari

The lightweight aggregate is an aggregate that weighs less than the usual rock aggregate and the quarry dust is a rock particle used in the concrete for the experimentation. The significant intention of the proposed technique is to frame a mathematical modeling with the aid of the optimization techniques. The mathematical modeling is done by minimizing the cost and time consumed in the case of extension of the real time experiment. The proposed mathematical modeling is utilized to predict four output parameters such as compressive strength (Mpa), split tensile strength (Mpa), flexural strength (Mpa), and deflection (in mm). Here, the modeling is carried out with three different optimization techniques like genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) with 80% of data from experiment utilized for the training and the remaining 20% for the validation. Finally, while testing, the error value is minimized and the performance obtained in the ACO for the parameters such as compressive strength, split tensile strength, flexural strength, and deflection is 91%, 98%, 87%, and 94% of predicted values, respectively, in the mathematical modeling.


2011 ◽  
Vol 261-263 ◽  
pp. 125-129 ◽  
Author(s):  
Venu Malagavelli ◽  
Neelakanteswara Rao Paturu

Construction field has experienced a growing interest in Fiber Reinforced Concrete (FRC) due to its various advantages. The disposal of industrial waste especially non biodegradable waste is creating a lot of problems in the environment. In the present investigation, an attempt has been made by using non biodegradable waste (polyester fibers) in the concrete to improve the crack resistance and strength. Concrete having compressive strength of 25MPa is used for this study. Samples were prepared by using various fiber contents starting from 0 to 6% of with an increment of 0.5% for finding Compressive strength, split tensile strength and flexural strengths. It is observed that, compressive strength, split tensile strength and flexural strengths of concretes is increasing as the fiber content is increased up to some extent.


2020 ◽  
Vol 7 (3) ◽  
pp. 115-139
Author(s):  
Sarkawt Karim ◽  
◽  
Azad Mohammed ◽  

This study describes two workability tests, compressive strength and tensile strength tests of high strength flowable concrete containing plastic fiber prepared from polyethylene terephthalate (PET) waste bottles. For the high fluidity mix Vebe time and V-funnel time tests were carried out. Results show that there is a Vebe time increase with PET fiber addition to concrete being increased with increasing fiber volume and fiber length. V-funnel time was found to reduce when up to 0.75% fiber volume is added to concrete, followed by an increase for larger fiber volumes. When fiber length is increase, there is more time increase, but in general, V-funnel time increase was lower than that of Vebe time, indicating a different influence of PET fiber on the compatibility and flowability. The measured V-funnel time for all mixes was found to conform to the limits of European specifications on the flowability of self compacting concrete. Small descending in compressive strength was recorded for RPET fiber reinforced concrete that reached 15.74 % for 1.5 percent fiber content with 10 mm fiber length. Attractive results was recorded in split tensile strength of RPET fibrous samples which resulted in improvement up to 63.3 % for 1.5 percent of 40 mm fiber length content.


Sign in / Sign up

Export Citation Format

Share Document