scholarly journals Structural interpretation of lineaments using satellite image processing: A case study in the vicinity of the Charvak reservoir

Author(s):  
Lola Sichugova ◽  
Dilbarkhon Fazilova

This work presents the results of lineaments interpretation using the automated method of the satellite images in the territory of the Charvak water reservoir in Uzbekistan. Tectonic and local (water impoundment in Charvak reservoir) features of the region deformation were determined on base LINE algorithm in software PCI Geomatica. The thematic map with the geospatial arrangement of lineaments was constructed on base of satellite images LANDSAT-8 processing. We concluded that water level fluctuations have a greater influence on the appearance of the lineaments structure than periods of water filling and downstream in the reservoir. Lineament density maps showed dominantly increased density towards the north-southern direction is due to tectonic features of the region and the west-eastern direction is due to water level fluctuations in the reservoir. The lineaments density maps for summer-autumn periods showed the faults arising from water level fluctuations only. Winter-spring period affected with high influence of the seasonal (snow pack, rainfall) processes as well.

2021 ◽  
Author(s):  
Daniel Ariztegui ◽  
Clément Pollier ◽  
Andrés Bilmes

<p>Lake levels in hydrologically closed-basins are very sensitive to climatically and/or anthropogenically triggered environmental changes. Their record through time can provide valuable information to forecast changes that can have substantial economical and societal impact.</p><p>Increasing precipitation in eastern Patagonia (Argentina) have been documented following years with strong El Niño (cold) events using historical and meteorological data. Quantifying changes in modern lake levels allow determining the impact of rainfall variations while contributing to anticipate the evolution of lacustrine systems over the next decades with expected fluctuations in ENSO frequencies. Laguna Carrilaufquen Grande is located in the intermontane Maquinchao Basin, Argentina. Its dimension fluctuates greatly, from 20 to 55 km<sup>2</sup> water surface area and an average water depth of 3 m. Several well-preserved gravelly beach ridges witness rainfall variations that can be compared to meteorological data and satellite images covering the last ~50 years. Our results show that in 2016 lake level was the lowest of the past 44 years whereas the maximum lake level was recorded in 1985 (+11.8 m above the current lake level) in a position 1.6 km to the east of the present shoreline. A five-years moving average rainfall record of the area was calculated smoothing the extreme annual events and correlated to the determined lake level fluctuations. The annual variation of lake levels was up to 1.2 m (e.g. 2014) whereas decadal variations related to humid-arid periods for the interval 2002 to 2016 were up to 9.4 m. These data are consistent with those from other monitored lakes and, thus, our approach opens up new perspectives to understand the historical water level fluctuations of lakes with non-available monitoring data.</p><p> </p><p>Laguna de los Cisnes in the Chilean section of the island of Tierra del Fuego, is a closed-lake presently divided into two sections of 2.2 and 11.9 km<sup>2</sup>, respectively. These two water bodies were united in the past forming a single larger lake. The lake level was  ca. 4 m higher than today as shown by clear shorelines and the outcropping of large Ca-rich microbialites. Historical data, aerial photographs and satellite images indicate that the most recent changes in lake level are the result of a massive decrease of water input during the last half of the 20<sup>th</sup> century triggered by an indiscriminate use of the incoming water for agricultural purposes. The spectacular outcropping of living and fossil microbialites is not only interesting from a scientific point of view but has also initiated the development of the site as a local touristic attraction. However, if the use of the incoming water for agriculture in the catchment remains unregulated the lake water level might drop dangerously and eventually the lake might fully desiccate.</p><p>These two examples illustrate how recent changes in lake level can be used to anticipate the near future of lakes. They show that ongoing climate changes along with the growing demand of natural resources have already started to impact lacustrine systems and this is likely to increase in the decades to come.</p>


2021 ◽  
Vol 66 (1) ◽  
pp. 175-187
Author(s):  
Duong Phung Thai ◽  
Son Ton

On the basis of using practical methods, satellite image processing methods, the vegetation coverage classification system of the study area, interpretation key for the study area, classification and post-classification pro cessing, this research introduces how to exploit and process multi-temporal satellite images in evaluating the changes of forest area. Landsat 4, 5 TM and Landsat 8 OLI remote sensing image data were used to evaluate the changes in the area of mangrove forests (RNM) in Ca Mau province in the periods of 1988 - 1998, 1998 - 2013, 2013 - 2018, and 1988 - 2018. The results of the image interpretation in 1988, 1998, 2013, 2018 and the overlapping of the above maps show: In the 30-year period from 1988 to 2018, the total area of mangroves in Ca Mau province was decreased by 28% compared to the beginning, from 71,093.3 ha in 1988 reduced to 51,363.5 ha in 2018, decreasing by 19,729.8 ha. The recovery speed of mangroves is 2 times lower than their disappearance speed. Specifically, from 1988 to 2018, mangroves disappeared on an area of 42,534.9 hectares and appeared on the new area of 22,805 hectares, only 12,154.5 hectares of mangroves remained unchanged. The fluctuation of mangrove area in Ca Mau province is related to the process of deforestation to dig shrimp ponds, coastal erosion, the formation of mangroves on new coastal alluvial lands and soil dunes in estuaries, as well as planting new mangroves in inefficient shrimp ponds.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1430
Author(s):  
V. M. Fernández-Pacheco ◽  
C. A. López-Sánchez ◽  
E. Álvarez-Álvarez ◽  
M. J. Suárez López ◽  
L. García-Expósito ◽  
...  

Air pollution is one of the major environmental problems, especially in industrial and highly populated areas. Remote sensing image is a rich source of information with many uses. This paper is focused on estimation of air pollutants using Landsat-5 TM and Landsat-8 OLI satellite images. Particulate Matter with particle size less than 10 microns (PM10) is estimated for the study area of Principado de Asturias (Spain). When a satellite records the radiance of the surface received at sensor, does not represent the true radiance of the surface. A noise caused by Aerosol and Particulate Matters attenuate that radiance. In many applications of remote sensing, that noise called path radiance is removed during pre-processing. Instead, path radiance was used to estimate the PM10 concentration in the air. A relationship between the path radiance and PM10 measurements from ground stations has been established using Random Forest (RF) algorithm and a PM10 map was generated for the study area. The results show that PM10 estimation through satellite image is an efficient technique and it is suitable for local and regional studies.


Author(s):  
George Ovakoglou ◽  
Thomas K. Alexandridis ◽  
Thomas L. Crisman ◽  
Charalampos Skoulikaris ◽  
George S. Vergos

1993 ◽  
Vol 30 (3) ◽  
pp. 499-508 ◽  
Author(s):  
William H. Mathews ◽  
John J. Clague

Summit Lake, which is impounded by Salmon Glacier, is the largest self-draining, ice-dammed lake in Canada. Until 1961, it contained few icebergs and was stable, overflowing to the north into me Bowser River valley. The first jökulhlaup occurred in December 1961, after a lengthy period of thinning and retreat of Salmon Glacier, when a subglacial runnel developed in the weakened ice dam, allowing the lake to drain suddenly. This flood and two others in 1965 and 1967 caused major damage to the road system in the Salmon River valley south of the lake. Since 1965, with three exceptions, Summit Lake has drained annually; minor floods along Salmon River in 1966, 1969, and 1973 may record partial drainings of the lake, although other explanations are possible. Jökulhlaups in recent years have been smaller and have occurred earlier in the year than most of the early floods. Rapid water-level fluctuations associated with the annual emptying and refilling of Summit Lake have generated large numbers of icebergs, derived from the Salmon Glacier dam; these icebergs presently choke the surface of the lake. The present jökulhlaup cycle is likely to continue either until the glacier readvances or until it retreats to the point that it no longer forms an effective seal.


Author(s):  
Nicolas Champion

Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled <i>seeds</i> if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled <i>shadows</i> if the difference of reflectance (in the NIR channel) with the <i>synthetic</i> ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled <i>clouds</i> during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pléiades-HR images and our first experiments show the feasibility to automate the detection of shadows and clouds in satellite image sequences.


2010 ◽  
Vol 10 ◽  
pp. 1293-1306 ◽  
Author(s):  
Erhan Alparslan ◽  
H. Gonca Coskun ◽  
Ugur Alganci

Darlik Dam supplies 15% of the water demand of Istanbul Metropolitan City of Turkey. Water quality (WQ) in the Darlik Dam was investigated from Landsat 5 TM satellite images of the years 2004, 2005, and 2006 in order to determine land use/land cover changes in the watershed of the dam that may deteriorate its WQ. The images were geometrically and atmospherically corrected for WQ analysis. Next, an investigation was made by multiple regression analysis between the unitless planetary reflectance values of the first four bands of the June 2005 Landsat TM image of the dam and WQ parameters, such as chlorophyll-a, total dissolved matter, turbidity, total phosphorous, and total nitrogen, measured at satellite image acquisition time at seven stations in the dam. Finally, WQ in the dam was studied from satellite images of the years 2004, 2005, and 2006 by pattern recognition techniques in order to determine possible water pollution in the dam. This study was compared to a previous study done by the authors in the Küçükçekmece water reservoir, also in Istanbul City.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Joseph J. Donovan ◽  
Eric F. Perry

A 44-year record of water level fluctuations in a series of adjacent closed underground mines documents the history of closure and mine flooding in the Fairmont Coalfield, one of the oldest coal mining districts in the Pittsburgh coal basin, West Virginia, USA. As closures proceeded and mines began to flood, US environmental regulations were first enacted mandating mine water control and treatment, rendering uncontrolled surface discharges unacceptable. The purpose of this study is to present this flooding history and to identify critical events that determined how mine pools evolved in this case. Also examined is the strategy developed to control and treat water from these mines. Flooding is visualized using both water level hydrographs and mine flooding maps with the latter constructed assuming mine water hydraulic continuity between one or more mines. The earliest flooding formed small pools within near-surface mines closed prior to 1962 yet still pumped following closure to minimize leaking into adjacent still-active workings. These subpools gradually enlarged and merged as more closures occurred and the need for protective pumping was removed, forming what is today referred to as the unconfined Fairmont Pool. Later, deeper mines, separated by intact updip barriers from the Fairmont Pool, were closed and flooded more gradually, supplied in large part by leakage from the Fairmont Pool. By 1985, all mines except 2 had closed and by 1994 all had fully flooded, with the Fairmont Pool interconnected to deeper single mine pools via barrier leakage. As protective pumping ceased, the Fairmont Pool rose to a water level 3 m higher than surface drainage elevation and in 1997 discharged from an undermined section of Buffalo Creek near the Monongahela River. The principal mine operator in the basin then designed a pumping system to transfer water from the Fairmont Pool to their existing treatment facilities to the north, thus terminating the discharge. It may be concluded that the progress of mine flooding was influenced by mining history and design, by the timing of closures, by barrier leakage conditions, and by geologic structure. A key element in how flooding proceeded was the presence of a series of intact barriers separating deep from shallow mines. The shallow mines closed and flooded early, but then lost sufficient water by barrier leakage into the deeper mines to delay the completion of flooding until after the deep mines had all closed and flooded as well. Intensive mine water control has continued from the 1997 breakout to the present. The final water control scheme was likely unanticipated and serendipitous; future district-wide mining efforts should be advised to consider in advance closeout strategies to control mine water postmining.


2021 ◽  
Author(s):  
Thorsteinn Thorsteinsson ◽  
Kristjana G. Eythórsdóttir ◽  
Esther H. Jensen ◽  
Ingibjörg Jónsdóttir ◽  
Finnur Pálsson ◽  
...  

&lt;p&gt;J&amp;#246;kulhlaups from marginal and subglacial lakes are a considerable hazard in Iceland and the rapid retreat of glaciers and ice caps is leading to hydrological changes in many locations at or near the glaciers. This calls for careful monitoring of glaciers and proglacial areas.&lt;/p&gt;&lt;p&gt;On August 17 2020, increased discharge was observed in Hv&amp;#237;t&amp;#225;, a glacial river originating in the ice cap Langj&amp;#246;kull. Sediment-laden j&amp;#246;kulhlaup waters filled a narrow gorge of the river near the farm and tourist resort H&amp;#250;safell and dead salmon were found strewn over fields 30&amp;#8211;40 km downstream.&lt;/p&gt;&lt;p&gt;Reconnaissance trips, overflights and satellite image studies revealed the following course of events:&lt;/p&gt;&lt;p&gt;A marginal glacial lake (current size: 1.3 km&lt;sup&gt;2&lt;/sup&gt;) started forming at 890 m elevation at the western margin of Langj&amp;#246;kull after the turn of the century. Sentinel-2 satellite images indicate that subglacial outflow from the lake had started in the morning of August 17. The exact path of the 2 km long subglacial water course can be inferred from a Landsat-8 image taken on November 11 2020. The image shows a narrow surface depression resulting from lowering of the glacier surface when the subglacial tunnel carrying the water was formed. The ice thickness averages 70 m along the flowpath.&lt;/p&gt;&lt;p&gt;Emerging from beneath the ice cap, the water flowed 13 km through the Svart&amp;#225; river canyon, eroding sediment from the river bed and canyon walls. Fresh colouring and sediment deposition was observed on sandur plains where Svart&amp;#225; joins the Geit&amp;#225; and Hv&amp;#237;t&amp;#225; rivers.&lt;/p&gt;&lt;p&gt;Observations of the j&amp;#246;kulhlaup (water level and flow velocity) as it passed beneath a bridge near H&amp;#250;safell help constrain discharge levels and flood volume at a location 18 km from the outlet at Langj&amp;#246;kull. In addition, real-time data on Hv&amp;#237;t&amp;#225; river water level are available from the Klj&amp;#225;foss hydrometric station 35 km further downstream, discharge started rising from a background value of 90 m&lt;sup&gt;3&lt;/sup&gt;/s on August 17 at 16:00. The flood peaked there at 260 m&lt;sup&gt;3&lt;/sup&gt;/s at 01:45 in the early morning of August 18 and had subsided again at noon on that day.&lt;/p&gt;&lt;p&gt;Using imagery from the Sentinel-2 satellites the area of the marginal lake is estimated to have diminished from 1.29 km&lt;sup&gt;2&lt;/sup&gt; to 0.46 km&lt;sup&gt;2&lt;/sup&gt; during the j&amp;#246;kulhlaup. A lowering of 4 m has been determined from aerial imagery and the total volume released was 3.4 million m&lt;sup&gt;3&lt;/sup&gt; according to preliminary estimates. We estimate an average flow velocity of 3&amp;#177;1 m/s for the entire distance from the outlet at the glacier to Klj&amp;#225;foss.&lt;/p&gt;&lt;p&gt;The glacier margin in the region has retreated by 500-1000 m and thinned by 3 m/a in the period 2004-2019 leading to the formation of the proglacial lake. Flooding events occurring in 2014 and 2017 have now been detected in hydrometric and remote sensing data. The lake is likely to become larger when retreat continues and further thinning of the ice may lead to more frequent j&amp;#246;kulhlaups in coming years. Plans to monitor the lake level and install early warning systems will be outlined in the presentation.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document