scholarly journals DIGITAL PUMPING UNIT WITH GEAR PUMPS USE TO PROVIDE THE FLOW REQUIRED FOR MOBILE EQUIPMENT WITH HIGH ENERGY EFFICIENCY

2021 ◽  
pp. 289-296
Author(s):  
Mihai Alexandru Hristea ◽  
Bogdan Tudor ◽  
Radu Radoi ◽  
Stefan Mihai Sefu

In this article, the authors want to present the benefits of digital hydraulics, by presenting a Digital Hydraulic Pumping System (DHPS), consisting of 4 fixed flow pumps, driven by a biaxial electric motor, 4 3/2 on/off electrohydraulic directional valve, 4/2 types electrohydraulic directional valve and a bidirectional hydraulic motor. With the help of a micro-controller, the 4 3/2 electrohydraulic directional valve, which independently control the output of each pump, are operated in a certain sequence, so that a regulation of the flow provided in the system in 15 discrete points is obtained. Due to the construction of the 3/2 electrohydraulic directional valve (electrohydraulic directional valve with port P to T), but also of the microcontroller, a variation of the flow supplied in the system with low energy losses is obtained. This system is designed within the digital hydraulics laboratory of the INOE 2000-IHP Research Institute, in order to obtain preliminary results, which will also lead to its physical realization. The article contains the results obtained by numerical simulation of using Digital fluid power technology in the field of hydraulic drives, systems which have advantages such as: the use of simple, robust components with a high degree of flexibility and programmability.

2015 ◽  
Vol 7 (48) ◽  
pp. 26381-26386 ◽  
Author(s):  
Chang Won Ahn ◽  
Gantsooj Amarsanaa ◽  
Sung Sik Won ◽  
Song A Chae ◽  
Dae Su Lee ◽  
...  

2004 ◽  
Vol 10 (S02) ◽  
pp. 258-259
Author(s):  
Wilfried Sigle

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


Author(s):  
Willem H.J. Andersen

Electron microscope design, and particularly the design of the imaging system, has reached a high degree of perfection. Present objective lenses perform up to their theoretical limit, while the whole imaging system, consisting of three or four lenses, provides very wide ranges of magnification and diffraction camera length with virtually no distortion of the image. Evolution of the electron microscope in to a routine research tool in which objects of steadily increasing thickness are investigated, has made it necessary for the designer to pay special attention to the chromatic aberrations of the magnification system (as distinct from the chromatic aberration of the objective lens). These chromatic aberrations cause edge un-sharpness of the image due to electrons which have suffered energy losses in the object.There exist two kinds of chromatic aberration of the magnification system; the chromatic change of magnification, characterized by the coefficient Cm, and the chromatic change of rotation given by Cp.


2020 ◽  
Author(s):  
Lucian Chan ◽  
Garrett Morris ◽  
Geoffrey Hutchison

The calculation of the entropy of flexible molecules can be challenging, since the number of possible conformers grows exponentially with molecule size and many low-energy conformers may be thermally accessible. Different methods have been proposed to approximate the contribution of conformational entropy to the molecular standard entropy, including performing thermochemistry calculations with all possible stable conformations, and developing empirical corrections from experimental data. We have performed conformer sampling on over 120,000 small molecules generating some 12 million conformers, to develop models to predict conformational entropy across a wide range of molecules. Using insight into the nature of conformational disorder, our cross-validated physically-motivated statistical model can outperform common machine learning and deep learning methods, with a mean absolute error ≈4.8 J/mol•K, or under 0.4 kcal/mol at 300 K. Beyond predicting molecular entropies and free energies, the model implies a high degree of correlation between torsions in most molecules, often as- sumed to be independent. While individual dihedral rotations may have low energetic barriers, the shape and chemical functionality of most molecules necessarily correlate their torsional degrees of freedom, and hence restrict the number of low-energy conformations immensely. Our simple models capture these correlations, and advance our understanding of small molecule conformational entropy.


2001 ◽  
Vol 28 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Gabriele Carannante ◽  
A. Laviano ◽  
D. Ruberti ◽  
Lucia Simone ◽  
G. Sirna ◽  
...  

Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


Author(s):  
Peter Rez

Transportation efficiency can be measured in terms of the energy needed to move a person or a tonne of freight over a given distance. For passengers, journey time is important, so an equally useful measure is the product of the energy used and the time taken for the journey. Transportation requires storage of energy. Rechargeable systems such as batteries have very low energy densities as compared to fossil fuels. The highest energy densities come from nuclear fuels, although, because of shielding requirements, these are not practical for most forms of transportation. Liquid hydrocarbons represent a nice compromise between high energy density and ease of use.


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Sign in / Sign up

Export Citation Format

Share Document