ARCTIC HARE (LEPUS TIMIDUS L.) RESOURCE SITUATION IN THE RYAZAN AND TULA REGIONS

2020 ◽  
Vol 15 (9) ◽  
pp. 1285-1295
Author(s):  
M.K. Chugreev ◽  
◽  
G.I. Blokhin ◽  
N.A. Morgunov ◽  
I.S. Tkacheva ◽  
...  

The Arctic hare is a traditional favorite hunting object in Russia. One of the main tasks of ecology is the study of populations. The most important quantitative parameter for a biological community is the change in the number of its specimen. On the basis of official data on animal counts over the past 25 years, we have established some characteristics that provide information on the state of the Arctic hare resources in the Ryazan and Tula regions. The aim of this work was to carry out a population analysis of the Arctic hare resources in the south of the Moscow region in the Ryazan and Tula regions over the past 25 years. The population analysis included studying static (the number and density of the hare population, the volume of prey, as well as the long-term average value of the number) and dynamic (the dynamics of the number and volume of prey, the absolute and relative rate of change in the population size) indicators. Primary data on the population of hares were collected using the winter route accounting method. The population density of hares was determined on the total territory of the hunting grounds in the corresponding territory. Basing on the data obtained, it was revealed that over the past quarter of a century, the number of Arctic hares in the Ryazan region has a tendency to decrease. The population density of Arctic hares in 1995 and 2019 in the Tula region remained practically at the same level. The indicator of the Arctic hare kill in both Ryazan and Tula regions tends to decrease.

Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1961-1974 ◽  
Author(s):  
Ming Wei ◽  
Armando Caballero ◽  
William G Hill

Formulae were derived to predict genetic response under various selection schemes assuming an infinitesimal model. Account was taken of genetic drift, gametic (linkage) disequilibrium (Bulmer effect), inbreeding depression, common environmental variance, and both initial segregating variance within families (σAW02) and mutational (σM2) variance. The cumulative response to selection until generation t(CRt) can be approximated asCRt≈R0[t−β(1−σAW∞2σAW02)t24Ne]−Dt2Ne,where Ne is the effective population size, σAW∞2=NeσM2 is the genetic variance within families at the steady state (or one-half the genic variance, which is unaffected by selection), and D is the inbreeding depression per unit of inbreeding. R  0 is the selection response at generation 0 assuming preselection so that the linkage disequilibrium effect has stabilized. β is the derivative of the logarithm of the asymptotic response with respect to the logarithm of the within-family genetic variance, i.e., their relative rate of change. R  0 is the major determinant of the short term selection response, but σM2, Ne and β are also important for the long term. A selection method of high accuracy using family information gives a small Ne and will lead to a larger response in the short term and a smaller response in the long term, utilizing mutation less efficiently.


Rangifer ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 43-58
Author(s):  
Alexander K. Prichard ◽  
Ryan L. Klimstra ◽  
Brian T. Person ◽  
Lincoln S. Parrett

With industrial development expanding in the Arctic, there is increasing interest in quantifying the impacts of development projects on barren ground caribou (Rangifer tarandus granti). The primary data source to assess caribou distribution and predict impacts in remote areas of Alaska has shifted in recent decades from aerial survey data to telemetry data, but these techniques have different strengths and weaknesses. The ranges of two caribou herds, the Western Arctic Herd and the Teshekpuk Herd, overlap in northwest Alaska between Wainwright and Atqasuk, Alaska. Based on long-term telemetry data sets, this region was thought to be outside of the core calving ranges of both herds. Calving has long been reported to occur in this general area, but early reports assumed caribou were from the Western Arctic Herd and only one systematic aerial survey of caribou density and distribution during calving has been conducted in this area in recent decades. Following interest in industrial development in this area, we conducted aerial strip-transect surveys during early to mid-June 2013–2015 to directly assess the density and distribution of caribou in the area and we used existing telemetry data to compare our results to the seasonal distribution of both herds. Total caribou densities varied between 0.36 and 1.06 caribou/km² among years, and calf densities varied 0.04 and 0.25 calves/km² among years. Contrary to assumptions by early researchers in the area, telemetry data indicated that caribou in this area during early to mid-June were from the Teshekpuk Herd. The use of telemetry data alone underestimated the importance of this area for calving, but the combination of aerial surveys and telemetry data provided complementary information on caribou use of this area showing the importance of collecting the appropriate types of data for assessing potential impacts of development on caribou.


2019 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Albert Parker ◽  
Clifford Ollier

AbstractOver the past decades, detailed surveys of the Pacific Ocean atoll islands show no sign of drowning because of accelerated sea-level rise. Data reveal that no atoll lost land area, 88.6% of islands were either stable or increased in area, and only 11.4% of islands contracted. The Pacific Atolls are not being inundated because the sea level is rising much less than was thought. The average relative rate of rise and acceleration of the 29 long-term-trend (LTT) tide gauges of Japan, Oceania and West Coast of North America, are both negative, −0.02139 mm yr−1and −0.00007 mm yr−2respectively. Since the start of the 1900s, the sea levels of the Pacific Ocean have been remarkably stable.


2013 ◽  
Vol 10 (2) ◽  
pp. 2705-2765 ◽  
Author(s):  
F. Günther ◽  
P. P. Overduin ◽  
A. V. Sandakov ◽  
G. Grosse ◽  
M. N. Grigoriev

Abstract. Permafrost coasts in the Arctic are susceptible to a variety of changing environmental factors all of which currently point to increasing coastal erosion rates and mass fluxes of sediment and carbon to the shallow arctic shelf seas. Rapid erosion along high yedoma coasts composed of Ice Complex permafrost deposits creates impressive coastal ice cliffs and inspired research for designing and implementing change detection studies for a long time, but continuous quantitative monitoring and a qualitative inventory of coastal thermo-erosion for large coastline segments is still lacking. Our goal is to use observations of thermo-erosion along the mainland coast of the Laptev Sea in eastern Siberia to understand how erosion rates depend on coastal geomorphology and the relative contributions of waterline and atmospheric drivers to coastal thermo-erosion over the past 4 decades and in the past few years. We compared multitemporal sets of orthorectified satellite imagery from 1965 to 2011 for three segments of coastline with a length of 73 to 95 km each and analyzed thermo-denudation (TD) along cliff top and thermo-abrasion (TA) along cliff bottom for two nested time periods: long-term rates (the past 39–43 yr) and short term rates (the past 1–3 yr). The Normalized Difference Thermo-erosion Index (NDTI) was used as a proxy that qualitatively describes the relative proportions of TD and TA. Mean annual erosion rates at all three sites were higher in recent years (−5.3 ± 1.31 m a−1) than over the long term mean (−2.2 ± 0.13 m a−1). The Mamontov Klyk coast exhibit primarily spatial variations of thermo-erosion, while intrasite-specific variations were strongest at the Buor Khaya coast, where slowest long-term rates around −0.5 ± 0.08 m a−1 were observed. The Oyogos Yar coast showed continuously rapid erosion up to −6.5 ± 0.19 m a−1. In general, variable characteristics of coastal thermo-erosion were observed not only between study sites and over time, but also within single coastal transects along the cliff profile. Varying intensities of cliff bottom and top retreat are leading to diverse qualities of coastal erosion that have different impacts on coastal mass fluxes. The different extents of Ice Complex permafrost degradation within our study sites turned out to influence not only the degree of coupling between TD and TA, and the magnitude of effectively eroded volumes, but also the quantity of organic carbon released to the shallow Laptev Sea from coastal erosion, which ranged on a long-term from 88 ± 21.0 to 800 ± 61.1 t per km coastline per year and will correspond to considerably higher amounts, if recently observed more rapid coastal erosion rates prove to be persistent.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Masoud Irannezhad

This study analyses the first and last days of snowmelt events and the number of days (duration) between those throughout a water year (September-August). The snowmelt duration (SD) as well as its first (SFD) and last (SLD) days were estimated using daily precipitation and temperature measurements at the Kaisaniemi meteorological station in southern Finland during 1909-2008 as input datasets to a temperature-index snowmelt model. As snowmelt is a sensitive hydrological variable to temperature, this study also evaluated historical variations and trends in November-May (SDt), November-January (SFDt), and March-May (SLDt) temperatures corresponding to SD, SFD, and SLD at Kaisaniemi. The trends in all these parameters as well as their correlations with the well-known climate teleconnections over Finland were investigated. Long-term average values indicated the longest SD was about 131 days between 15 December and 25 April at Kaisaniemi. The SD significantly (p<0.05) shortened by 0.37 (days/year) at Kaisaniemi during 1909-2008 mainly due to the earlier (0.32 days/year) SLD. Such trends in SD and SLD were principally associated with century-long significant warming trends (0.02 °C/year) in both SDt and SLDt. The Arctic Oscillation (AO) was the most influential climate teleconnection for historical variations in SD, SLD, SDt, SFDt, and SLDt at Kaisaniemi.


2009 ◽  
Vol 13 (5) ◽  
pp. 595-604 ◽  
Author(s):  
S. W. Lyon ◽  
G. Destouni ◽  
R. Giesler ◽  
C. Humborg ◽  
M. Mörth ◽  
...  

Abstract. Permafrost thawing is likely to change the flow pathways taken by water as it moves through arctic and sub-arctic landscapes. The location and distribution of these pathways directly influence the carbon and other biogeochemical cycling in northern latitude catchments. While permafrost thawing due to climate change has been observed in the arctic and sub-arctic, direct observations of permafrost depth are difficult to perform at scales larger than a local scale. Using recession flow analysis, it may be possible to detect and estimate the rate of permafrost thawing based on a long-term streamflow record. We demonstrate the application of this approach to the sub-arctic Abiskojokken catchment in northern Sweden. Based on recession flow analysis, we estimate that permafrost in this catchment may be thawing at an average rate of about 0.9 cm/yr during the past 90 years. This estimated thawing rate is consistent with direct observations of permafrost thawing rates, ranging from 0.7 to 1.3 cm/yr over the past 30 years in the region.


2017 ◽  
Vol 3 (1) ◽  
pp. 34
Author(s):  
Yugo Susanto ◽  
Riza Alfian ◽  
Rinidha Riana ◽  
Ibna Rusmana

Diabetes mellitus is a chronic disease characterized by hyperglycemia and glucose intolerance. Patients with DM in Indonesia ranks 4th largest with a prevalence of 8.6 % of the total population. Patient compliance in the treatment greatly affect the success of the therapy. The purpose of this study was to determine the level of adherence before and after administration of short message reminders, as well as knowing the adherence changes that occur in patients with type 2 diabetes at the Puskesmas Melati Kabupaten Kapuas. This esearch was conducted by quasi experimental design, with prospective data collection during the period from May to June 2016. The intervention was giving short message service reminder. Subjects who met the inclusion criteria as many as 15 patients. The primary data collection is done by filling the questionnaire adherence MMAS and secondary data obtained from medical observation sheet.            The results showed that in the pre intervention average value (mean) adherence by 5.8 or are in the low adherence rate, in post intervention average value of 7.4 or adherence are moderate adherence rates, with the rate of change (Δ) adherence towards better at 1.6. It can be concluded that the adherence were lower before than after giving short message service reminder. There was improvement in the adherence to taking medicine after giving short message service reminder. The giving short message service reminder increased the adherence to take medicine effectively


2020 ◽  
Vol 8 ◽  
Author(s):  
Raphael Krieg ◽  
Alex King ◽  
Armin Zenker

Invasive crayfish species were first documented in Switzerland in the 1970s. Today, North American crayfish species dominate in most major lakes and streams in Switzerland. In combination with the crayfish plague, they pose a substantial threat to our native crayfish. Over the past 20 years, various techniques have been applied to reduce negative impacts of these invasive crayfish in Switzerland: eradication (temporary drainage or destruction of a water system, biocides), suppression (intensive trapping, electricity introduction of predatory fish) and containment (construction of crayfish barriers). Temporary drainage or filling-in of isolated ponds, in combination with calcium hydroxide application has been successful in eradicating populations of invasive crayfish. However, trapping and introduction of predatory fish led to a reduction in population density but neither method has ever caused the extinction of a population. Invasive crayfish have not yet reached crayfish barriers, therefore, long-term functionality of these barriers still needs to be proven. Nevertheless, functional controls with native crayfish have shown that barriers prevent their upstream movement. Implementation of crayfish barriers is the most promising method to protect native crayfish from displacement by invasive crayfish species. Many measures are expensive, time consuming, and show little or no success in controlling invasive crayfish. Therefore, we recommend to focus on implementing drastic measures, such as filling-in or draining of isolated waters or a combination of various methods to maximise the reduction of population size.


1979 ◽  
Vol 8 (2) ◽  
pp. 59-72
Author(s):  
John W. Wysong ◽  
Mahmood Y. Seyala

During the past several decades, a number of research publications have used Markov chain processes to predict changes in number of farm firms, the average size of farms and labor resource productivity in farm production (Conneman, Harris and Wilson, Judge and Swanson, Kottke, Seyala, Willett and Saupe, Wysong and Seyala). The Markov method assumes that the pattern of change exhibited in the past will continue into the future. This method provides information on historical changes by frequency distribution categories as well as for the whole cohort, and allows for projection of these changes into the future. Previous studies have used mainly short-run periods of up to 5 years as the primary data base. This study has considered the use of longer-run base periods of 10 to 20 years combined with periodic updating of sample data in projecting long-term trends in numbers and sizes of dairy farms and revising such projections through time.


2013 ◽  
Vol 10 (6) ◽  
pp. 4297-4318 ◽  
Author(s):  
F. Günther ◽  
P. P. Overduin ◽  
A. V. Sandakov ◽  
G. Grosse ◽  
M. N. Grigoriev

Abstract. Permafrost coasts in the Arctic are susceptible to a variety of changing environmental factors all of which currently point to increasing coastal erosion rates and mass fluxes of sediment and carbon to the shallow arctic shelf seas. Rapid erosion along high yedoma coasts composed of Ice Complex permafrost deposits creates impressive coastal ice cliffs and inspired research for designing and implementing change detection studies for a long time, but continuous quantitative monitoring and a qualitative inventory of coastal thermo-erosion for large coastline segments is still lacking. Our goal is to use observations of thermo-erosion along the mainland coast of the Laptev Sea, in eastern Siberia, to understand how it depends on coastal geomorphology and the relative contributions of water level and atmospheric drivers. We compared multi-temporal sets of orthorectified satellite imagery from 1965 to 2011 for three segments of coastline ranging in length from 73 to 95 km and analyzed thermo-denudation (TD) along the cliff top and thermo-abrasion (TA) along the cliff bottom for two nested time periods: long-term rates (the past 39–43 yr) and short-term rates (the past 1–4 yr). The Normalized Difference Thermo-erosion Index (NDTI) was used as a proxy to qualitatively describe the relative proportions of TD and TA. Mean annual erosion rates at all three sites were higher in recent years (−5.3 ± 1.3 m a−1) than over the long-term mean (−2.2 ± 0.1 m a−1). The Mamontov Klyk coast exhibits primarily spatial variations of thermo-erosion, while intrasite-specific variations caused by local relief were strongest at the Buor Khaya coast, where the slowest long-term rates of around −0.5 ± 0.1 m a−1 were observed. The Oyogos Yar coast showed continuously rapid erosion up to −6.5 ± 0.2 m a−1. In general, variable characteristics of coastal thermo-erosion were observed not only between study sites and over time, but also within single coastal transects along the cliff profile. Varying intensities of cliff bottom and top erosion are leading to diverse qualities of coastal erosion that have different impacts on coastal mass fluxes. The different extents of Ice Complex permafrost degradation within our study sites turned out to influence not only the degree of coupling between TD and TA, and the magnitude of effectively eroded volumes, but also the quantity of organic carbon released to the shallow Laptev Sea from coastal erosion, which ranged on a long-term from 88 ± 21 to 800 ± 61 t per km coastline per year and will correspond to considerably higher amounts, if recently observed more rapid coastal erosion rates prove to be persistent.


Sign in / Sign up

Export Citation Format

Share Document