Resource Conservation Technologies in Punjab: Status and Problems

Under present intensive cropping systems, conventional agricultural practices over long-term were not found sustainable as it contributed to soil degradation, poor soil water retention, inefficient use of natural resources and global warming. Therefore, conservation agriculture (CA) technologies/practices were encouraged for sustainable agriculture in different crops. CA is defined as cropping systems based on minimum soil disturbance with the permanent surface covered through the retention of crop residues combined with diverse crop rotations. Resource conserving technologies (RCTs) referred to those practices or technologies that enhanced resources or input use efficiency. Presently, these technologies are still under the early stages of the adoption process. In Punjab, considerable efforts were made to popularize and increase the adoption of RCTs by state agricultural university and concerned line departments. However, the policies and efforts are inadequate and ineffective to achieve the desired results due to the lack of specific information in terms of farmer’s point of view. It is important to recognize the problems of the farmers at the grass-root level as well as the extension system responsible for the dissemination of technologies as the required changes were linked to people’s behaviour and attitudes. The economic benefits of various RCTs were reported by the farmers as reviewed in most of the studies. Farmers had a favourable attitude towards different resource conservation technologies. Non-availability of inputs and difficulty in the proper functioning of resource conservation technologies were the common problems observed in most of the studies reviewed. This paper reviewed the emergent concerns of the status of resource conservation technologies, the attitude of farmers and analysis the problems in the adoption of selected resource conservation technologies in Punjab. This review would be of great utility to agricultural planners, educators, and administrators in general in formulating the relevant policies and programs. On the basis of these, the appropriate programs for promotion and adoption of resource conservation technologies can be planned and implemented in a more efficient way so that the maximum number of farmers could be benefitted from these technologies.

2007 ◽  
Vol 47 (8) ◽  
pp. 887 ◽  
Author(s):  
G. A. Thomas ◽  
G. W. Titmarsh ◽  
D. M. Freebairn ◽  
B. J. Radford

Early agricultural practices in Queensland inadvertently led to accelerated soil erosion. During the 1940s, the Queensland Government initiated a soil conservation service that worked with the principles of matching land use with its capability, as well as runoff management using earth structures such as contour banks and grassed waterways. A concerted effort began in the 1960s to develop and adapt farming systems that maximised retention of crop residues to maintain surface cover to complement the earthworks. Investigation and promotion of farm machinery capable of dealing with high stubble levels commenced in the mid-1970s. Demonstrations of the benefits of reduced and no-tillage conservation farming practices for improved productivity and soil conservation also began at this time. The combined research, development and extension efforts of farmers, grower organisations, agribusiness and government agencies have contributed to an increase in the understanding of soil–water–crop interactions that have led to the adoption of no-tillage and conservation farming practices in Queensland. In 2005, the overall area under no-tillage was ~50% of the cropping land in the main grain growing areas of southern and central Queensland, but was potentially as high as 85% among some groups of farmers. Conservation farming practices, in their many forms, are now regarded as standard practice, and the agricultural advisory industry is involved considerably in providing advice on optimum herbicide application and crop rotation strategies for these practices. Factors hindering greater adoption of no-tillage include: farmer attitudes and aspirations, machinery conversion or replacement costs, buildup of soil and stubble-borne plant diseases, use of residual herbicides that may limit crop options, dual use of land for grazing and cropping, herbicide resistance, buildup of hard-to-kill weeds, the need for soil disturbance in some situations, and concerns by farmers about the effects of herbicides on the environment and human health. Developments that may aid further adoption of no-tillage systems include: ongoing machinery modifications that allow greater flexibility in the cropping systems, refinement of controlled traffic farming and precision agriculture, improved crop resistance or tolerance to plant diseases associated with stubble retention, availability of more crop options and rotations, development of a broader spectrum of effective herbicides and the use of genetic modification technologies to breed herbicide-resistant crops.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
LAL SINGH ◽  
PRADEEP KUMAR SINGH ◽  
HARI BAKSH ◽  
SARVESH SINGH

Vegetable crops are conducting under Farmers Participatory Research Trial in Temperate regions of Kashmir Valley. The trials are designed and managed by farmers, the researchers have only advice for selection of the resource conservation technology (treatments). Farmers have full control over the selection of treatments to be used on his/her field. The main objectives of this type of research is to be established and demonstrate the benefits of resource conservation technologies like raised bed, furrow irrigated planting system, zero tillage etc. over the conventional practices. In these type of trial farmers are briefed about new practices. The participating farmers are encouraged to experiment their own and are given the full control over the selection of subset of resource conservation technologies to be tested on their fields with a view to assess farmer innovation and acceptability.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 127 ◽  
Author(s):  
Arjun Kafle ◽  
Kevin Cope ◽  
Rachel Raths ◽  
Jaya Krishna Yakha ◽  
Senthil Subramanian ◽  
...  

Phosphorus is an essential macronutrient required for plant growth and development. It is central to many biological processes, including nucleic acid synthesis, respiration, and enzymatic activity. However, the strong adsorption of phosphorus by minerals in the soil decreases its availability to plants, thus reducing the productivity of agricultural and forestry ecosystems. This has resulted in a complete dependence on non-renewable chemical fertilizers that are environmentally damaging. Alternative strategies must be identified and implemented to help crops acquire phosphorus more sustainably. In this review, we highlight recent advances in our understanding and utilization of soil microbes to both solubilize inorganic phosphate from insoluble forms and allocate it directly to crop plants. Specifically, we focus on arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and phosphate-solubilizing bacteria. Each of these play a major role in natural and agroecosystems, and their use as bioinoculants is an increasing trend in agricultural practices.


2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


2021 ◽  
Author(s):  
Usha Nandhini Devi Harinarayanan ◽  
Pugalendhi Lakshmanan

Present day agricultural practices are posing a serious threat to the human population due to unscrupulous use of chemical fertilizers and pesticides. Conventional agricultural practices wherein large quantities and unscrupulous use of chemical fertilizers and pesticides are no longer safer as it directly enter the food chain. Hence, organic cultivation of vegetables is gaining momentum among the growing population. Organic practices rely on crop rotations, crop residues, plant and animal manures, growing of legume and green manure crops and biological control of pests and diseases. It aims to combine tradition, innovation and science in a balanced proportion to utilize the environment in safer manner and maintain ecological balance. Organic cultivation assures protection of the environment and plays a major role on the economy of a nation. Sustainable production of organic vegetables needs to be ensured to fetch premium price in the domestic as well as international markets. Organic farming has shown expansion in the recent years in the European countries offering scope for a better price in the international market.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Liliane Ngoune Tandzi ◽  
Charles Shelton Mutengwa

Standardization of crop yield estimation methods at various levels of farming helps to obtain accurate agricultural statistics as well as assessing the suitability of agricultural practices under various production conditions. The current paper reviews various maize yield estimation methods, taking into account available yield parameters, and it also analyses the yield gap between maize potential and attainable yield. The easiest and more reliable methods of yield estimation are based on yield parameters collected from the field. However, farmer estimation methods are cheaper and faster compared to any other method of yield estimation from farmers’ fields. This paper also elaborates on the importance of the use of more complex methods for yield estimation, such as remote sensing and crop modelling. These complex methods are more accurate and can predict yield before field harvest with less deviation from the exact harvest yield. However, they are very expensive and not efficient for small plots of land (less than 1 ha). Factors that contribute to the gap between potential and actual yield include poor implementation of agricultural policies, strict regulation of fertilizer inputs, vulnerability of smallholder cropping systems to adverse climatic conditions, occurrence of biotic and abiotic constraints, as well as unavailability of seeds and labor.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Mai Phuong Nguyen ◽  
Philippe Vaast ◽  
Tim Pagella ◽  
Fergus Sinclair

In recent decades in northwest Vietnam, Arabica coffee has been grown on sloping land in intensive, full sun monocultures that are not sustainable in the long term and have negative environmental impacts. There is an urgent need to reverse this negative trend by promoting good agricultural practices, including agroforestry, to prevent further deforestation and soil erosion on slopes. A survey of 124 farmers from three indigenous groups was conducted in northwest Vietnam to document coffee agroforestry practices and the ecosystem services associated with different tree species used in them. Trees were ranked according to the main ecosystem services and disservices considered to be locally relevant by rural communities. Our results show that tree species richness in agroforestry plots was much higher for coffee compared to non-coffee plots, including those with annual crops and tree plantations. Most farmers were aware of the benefits of trees for soil improvement, shelter (from wind and frost), and the provision of shade and mulch. In contrast, farmers had limited knowledge of the impact of trees on coffee quality and other interactions amongst trees and coffee. Farmers ranked the leguminous tree species Leucaena leucocephala as the best for incorporating in coffee plots because of the services it provides to coffee. Nonetheless, the farmers’ selection of tree species to combine with coffee was highly influenced by economic benefits provided, especially by intercropped fruit trees, which was influenced by market access, determined by the proximity of farms to a main road. The findings from this research will help local extension institutions and farmers select appropriate tree species that suit the local context and that match household needs and constraints, thereby facilitating the transition to a more sustainable and climate-smart coffee production practice.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1571
Author(s):  
Nicolò Colombani ◽  
Micòl Mastrocicco ◽  
Fabio Vincenzi ◽  
Giuseppe Castaldelli

Nitrate is a major groundwater inorganic contaminant that is mainly due to fertilizer leaching. Compost amendment can increase soils’ organic substances and thus promote denitrification in intensively cultivated soils. In this study, two agricultural plots located in the Padana plain (Ferrara, Italy) were monitored and modeled for a period of 2.7 years. One plot was initially amended with 30 t/ha of compost, not tilled, and amended with standard fertilization practices, while the other one was run with standard fertilization and tillage practices. Monitoring was performed continuously via soil water probes (matric potential) and discontinuously via auger core profiles (major nitrogen species) before and after each cropping season. A HYDRUS-1D numerical model was calibrated and validated versus observed matric potential and nitrate, ammonium, and bromide (used as tracers). Model performance was judged satisfactory and the results provided insights on water and nitrogen balances for the two different agricultural practices tested here. While water balance and retention time in the vadose zone were similar in the two plots, nitrate leaching was less pronounced in the plot amended with compost due to a higher denitrification rate. This study provides clear evidence that compost addition and no-tillage (conservation agriculture) can diminish nitrate leaching to groundwater, with respect to standard agricultural practices.


Sign in / Sign up

Export Citation Format

Share Document