scholarly journals THE WAY RAREM RESERVOIR’S EFFICACY IN SUPPLYING THE IRRIGATION AREA: A SIMULATION ANALYSIS

2021 ◽  
Vol 56 (5) ◽  
pp. 1-10
Author(s):  
Tisno Subroto ◽  
Mohammad Bisri ◽  
Lily Montarcih Limantara ◽  
Widandi Soetopo

This research intends to evaluate the Way Rarem reservoir operation’s efficacy in supplying its irrigation area. The methodology uses simulation analysis based on various dependable discharges. Three conditions of dependable discharge are applied, with probabilities of 80%, 50%, and 35%. The Way Rarem reservoir is located in North Lampung Regency, Lampung Province, Indonesia. For the operation of the Way Rarem reservoir, in 1984, it was planned for reservoir to serve an area of 22,000 ha to meet its water requirement, where the capacity of the carrier channel had a discharge of 22.22 m3/s. As of 2015, an irrigation area of 15,081 ha was served; moreover, the reservoir was ready to serve 17,612.75 ha in 2017 using a dependable discharge of 50%. The watershed area of Way Rarem is 328 km2; the normal storage capacity is 59.90 million m3 with a water level of 54.00 mm, while the minimum water level is 46.00 m for irrigation water taking. In this study, the simulation is carried out using the existing conditions, and the crop intensity reaches 146.25%. After conducting the assessment of the reservoir operation pattern, the crop intensity reaches 177.25%, and the reservoir water that is not used and the overflow through the spillway is about 175.94 million m3. This result can be used as a reference for further research as an optimization model.

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2543
Author(s):  
Jinuk Kim ◽  
Jiwan Lee ◽  
Jongyoon Park ◽  
Sehoon Kim ◽  
Seongjoon Kim

This study aims to develop a reservoir operation rule adding downstream environmental flow release (EFR) to the exclusive use of irrigation water supply (IWS) from agricultural reservoirs through canals to rice paddy areas. A reservoir operation option was added in the Soil and Water Assessment Tool (SWAT) to handle both EFR and IWS. For a 366.5 km2 watershed including three agricultural reservoirs and a rice paddy irrigation area of 4744.7 ha, the SWAT was calibrated and validated using 21 years (1998–2018) of daily reservoir water levels and downstream flow data at Gongdo (GD) station. For reservoir water level and streamflow, the average root means square error (RMSE) ranged from 19.70 mm to 19.54 mm, and the coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) had no effect on the improved SWAT. By applying the new reservoir option, the EFR amount for a day was controlled by keeping the reservoir water level up in order to ensure that the IWS was definitely satisfied in any case. The downstream mean wet streamflow (Q95) decreased to 5.70 m3/sec from 5.71 m3/sec and the mean minimum flow (Q355) increased to 1.05 m3/sec from 0.94 m3/sec. Through the development of a SWAT reservoir operation module that satisfies multiple water supply needs such as IWR and EFR, it is possible to manage agricultural water in the irrigation period and control the environmental flow in non-irrigation periods. This study provides useful information to evaluate and understand the future impacts of various changes in climate and environmental flows at other sites.


2013 ◽  
Vol 10 (1) ◽  
pp. 1251-1288 ◽  
Author(s):  
S. Yoshikawa ◽  
J. Cho ◽  
H. G. Yamada ◽  
N. Hanasaki ◽  
A. Khajuria ◽  
...  

Abstract. Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependency of the supply of irrigation water from rivers, large reservoirs with a greater than 1.0 km3 storage capacity, medium-size reservoirs with storage capacities ranging from 1.0 km3 to 3.0 Mm3, and non-local non-renewable blue water (NNBW), particularly taking into account variations in irrigation area during the period 1960–2000. We also estimated the future irrigation water requirements from water supply sources in addition to these four sources, using an irrigation area scenario. The net irrigation water requirements from various supply sources were assessed using the global H08 water resources model. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0°. We obtained net irrigation water from rivers and medium-size reservoirs, and determined that the NNBW increased continuously from 1960 to 1985, but the net irrigation water from large reservoirs increased only marginally. After 1985, the net irrigation water from rivers approached a critical limit with the continued expansion of the irrigation area. The irrigation water requirements from medium-size reservoirs and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of medium-size reservoirs. Under the irrigation area scenario without climate change, global net irrigation water requirements from additional water supply sources will account for 26% of the total requirements in the year 2050. We found that expansion of irrigation areas due to population growth will generate an enormous demand for irrigation water from additional resources.


2021 ◽  
Vol 5 (1) ◽  
pp. 126-134
Author(s):  
A. B. Adegbehin ◽  
E. O. Iguisi ◽  
Y. O. Yusuf ◽  
C. K. Dauda

The focus of this empirical study is to investigate the trends of some hydro metrological parameters and Impact Vulnerability Status (IVS) of irrigation water resources on rice and tomato production in the downstream of Tiga station. Investigation was conducted using data on rainfall, temperature, evaporation and reservoir water level for 30 years in Tiga station. The data collected was used to show the trend fluctuations of each parameter for the period of study. The rainfall data was also used to analyze the Normalized Rainfall Index (NRI) in order to know periods of surplus, deficit and optimal water availability as against the required water for rice and tomato production. The rainfall pattern and water level showed increasing trend while temperature and evaporation showed a general decrease in trend. The NRI used to investigate the IVS in Tiga station downstream revealed that rice and tomato were not vulnerable to drought and flooding for 18 years while every other years were vulnerable or slightly vulnerable. However, only year 1993 appears to be very wet and highly susceptible to flooding. Findings from focus group revealed that 80% of the farmers reported floods occurrences during rainy season and deficit of water between January and March of each year. In conclusion, the IVS of farmers to climate change revealed periods of deficit, optimal and excess water availability for rice and tomato production and their vulnerability status. It was recommended that the government should strengthen laws and policies relevant in addressing climate change


2014 ◽  
Vol 18 (10) ◽  
pp. 4289-4310 ◽  
Author(s):  
S. Yoshikawa ◽  
J. Cho ◽  
H. G. Yamada ◽  
N. Hanasaki ◽  
S. Kanae

Abstract. Water supply sources for irrigation (e.g. rivers and reservoirs) are critically important for agricultural productivity. The current rapid increase in irrigation water use is considered unsustainable and threatens food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during past (1960–2001) and future (2002–2050) periods using the global water resources model, H08. The H08 model can simulate water requirements on a daily basis at a resolution of 1.0° × 1.0° latitude and longitude. The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 × 109 m3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 × 109 m3 to 3.0 × 106 m3, and non-local non-renewable blue water (NNBW). The simulated results from 1960 to 2001 showed that RIV, MSR and NNBW increased significantly from the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, the increase in RIV declined as it approached a critical limit, due to the continued expansion of irrigation area. MSR and NNBW increased significantly, during the same time period, following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as a future increase in NNBW. After the 2020s, MSR was predicted to approach the critical limit, and ADD would account for 11–23% of the total requirements in the 2040s.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3461
Author(s):  
Hao-Han Tsao ◽  
Yih-Guang Leu ◽  
Li-Fen Chou ◽  
Chao-Yang Tsao

Reservoirs in Taiwan often provide hydroelectric power, irrigation water, municipal water, and flood control for the whole year. Taiwan has the climatic characteristics of concentrated rainy seasons, instantaneous heavy rains due to typhoons and rainy seasons. In addition, steep rivers in mountainous areas flow fast and furiously. Under such circumstances, reservoirs have to face sudden heavy rainfall and surges in water levels within a short period of time, which often causes the water level to continue to rise to the full level even though hydroelectric units are operating at full capacity, and as reservoirs can only drain the flood water, this results in the waste of hydropower resources. In recent years, the impact of climate change has caused extreme weather events to occur more frequently, increasing the need for flood control, and the reservoir operation has faced severe challenges in order to fulfil its multipurpose requirements. Therefore, in order to avoid the waste of hydropower resources and improve the effectiveness of the reservoir operation, this paper proposes a real-time 48-h ahead water level forecasting system, based on fuzzy neural networks with multi-stage architecture. The proposed multi-stage architecture provides reservoir inflow estimation, 48-h ahead reservoir inflow forecasting, and 48-h ahead water level forecasting. The proposed method has been implemented at the Techi hydropower plant in Taiwan. Experimental results show that the proposed method can effectively increase energy efficiency and allow the reservoir water resources to be fully utilized. In addition, the proposed method can improve the effectiveness of the hydropower plant, especially when rain is heavy.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Bing Han ◽  
Bin Tong ◽  
Jinkai Yan ◽  
Chunrong Yin ◽  
Liang Chen ◽  
...  

Reservoir landslide is a type of commonly seen geological hazards in reservoir area and could potentially cause significant risk to the routine operation of reservoir and hydropower station. It has been accepted that reservoir landslides are mainly induced by periodic variations of reservoir water level during the impoundment and drawdown process. In this study, to better understand the deformation characters and controlling factors of the reservoir landslide, a multiparameter-based monitoring program was conducted on a reservoir landslide—the Hongyanzi landslide located in Pubugou reservoir area in the southwest of China. The results indicated that significant deformation occurred to the landslide during the drawdown period; otherwise, the landslide remained stable. The major reason of reservoir landslide deformation is the generation of seepage water pressure caused by the rapidly growing water level difference inside and outside of the slope. The influences of precipitation and earthquake on the slope deformation of the Hongyanzi landslide were insignificant.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2011
Author(s):  
Pablo Páliz Larrea ◽  
Xavier Zapata Ríos ◽  
Lenin Campozano Parra

Despite the importance of dams for water distribution of various uses, adequate forecasting on a day-to-day scale is still in great need of intensive study worldwide. Machine learning models have had a wide application in water resource studies and have shown satisfactory results, including the time series forecasting of water levels and dam flows. In this study, neural network models (NN) and adaptive neuro-fuzzy inference systems (ANFIS) models were generated to forecast the water level of the Salve Faccha reservoir, which supplies water to Quito, the Capital of Ecuador. For NN, a non-linear input–output net with a maximum delay of 13 days was used with variation in the number of nodes and hidden layers. For ANFIS, after up to four days of delay, the subtractive clustering algorithm was used with a hyperparameter variation from 0.5 to 0.8. The results indicate that precipitation was not influencing input in the prediction of the reservoir water level. The best neural network and ANFIS models showed high performance, with a r > 0.95, a Nash index > 0.95, and a RMSE < 0.1. The best the neural network model was t + 4, and the best ANFIS model was model t + 6.


Sign in / Sign up

Export Citation Format

Share Document