scholarly journals STATE OF THE ART OF TANK STRUCTURAL EVALUATION REVIEW: A CASE STUDY OF AN ELEVATED CONCRETE WATER TANK CONCERNING CRACK INITIATION

2021 ◽  
Vol 56 (5) ◽  
pp. 90-106
Author(s):  
Taufiq Rochman ◽  
Suhariyanto

This study aims at the structural evaluation of the elevated concrete water tank condition, including crack initiation, through nondestructive testing. The growing demands for environmental quality have resulted in a rise in the design and construction of tanks and reservoirs in the construction industry. Cracks for water line leakage were found during watertight testing in concrete tanks. Long-term liquid leaking may permanently damage the tank and can contaminate the groundwater. Given the critical existence of leaked cracks in tank serviceability and durability, the contribution examines the triggers and effects of their occurrence. An inspection of the existing water tank system is conducted to ascertain its condition. The investigation included structural design checks, concrete compressive strength tests, visual assessments, hammer inspections, and Ultrasonic Pulse Velocity (UPV) testing with Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT). This observation is made at many elevations on various sampling points on the tank structure's elements, including columns, beams, tank floor slabs, and tank wall shells. The results indicate the presence of flexural type cracks in the main beam's middle span and diagonal beams. Additionally, cracks attributed to long-term drying shrinkage were discovered on the diagonal of the floor slab and cracks of the same pattern on the main beam's middle span. The deflection estimated by structural remodeling was larger than the deflection estimated by design. The computed crack width in the main and diagonal beam exceeds the acceptable crack width.

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Fatih Özcan ◽  
Halil Kaymak

In this work, utilization of metakaolin (MK) and calcite (C), working reversely in workability aspect, as mineral admixture in self-compacting concrete (SCC), was investigated. MK and C replaced cement in mass basis at various replacement ratios, separately and together. In total, 19 different SCCs were produced. Binder content and water to binder ratio were selected as 500 kg/m3 and 0.4, respectively. Workability tests including slump flow, T50, L-box, and V-funnel tests were performed. Consistency and setting times of binder paste were measured. While replacement of MK with cement increased the amount of plasticiser requirement, calcite worked reversely and decreased it. Reverse influence of MK and C on plasticiser requirement of SCC made possible to produce SCC at total 45% replacement ratio of MK and C together. Samples of SCC were cured in water at 20°C temperature. Compressive strengths of SCC samples were measured up to six months to evaluate the influence of MK and C, separately and together. Ultrasonic pulse velocity, abrasion, and capillary water absorption values of samples were determined at specified age. MK inclusion in concrete reduces workability, while C inclusion increases it. C and MK inclusion together remedied workability of concrete and enabled to produce SCC with high volume of admixtures. Furthermore, C incorporation increased one-day compressive strength, while MK incorporation reduced it in comparison with control concrete. In long term, C inclusion reduced compressive strength; however, MK inclusion increased it. C inclusion remedied one-day strength of concrete when it was used together with MK. MK inclusion remedied long-term compressive strength when it was used together with C and enabled to produce high-strength SCC with high volume of admixtures. SCC containing MK and C together showed better durability-related property.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1288 ◽  
Author(s):  
Mohammad Mastali ◽  
Ahmad Alzaza ◽  
Khaled Mohammad Shaad ◽  
Paivo Kinnunen ◽  
Zahra Abdollahnejad ◽  
...  

This experimental study aimed to develop alkali-activated concretes containing carbonated basic oxygen furnace (BOF) slag aggregates. In the first stage, the impacts of replacing normal aggregates with carbonated BOF slag aggregates in different alkali-activated concretes were determined by assessing mechanical properties (compressive and flexural strengths), morphology, thermogravimetric analyses (TGA), differential thermogravimetry (DTG) and the crystalline phases using X-ray diffraction analysis. Second, the developed plain alkali-activated concrete was reinforced by different fibre types and dosages to limit the negative impacts of the drying shrinkage and to improve strength. Therefore, the effects of using different fibre contents (1% and 1.5% in Vol.) and types (Polyvinyl alcohol [PVA], Polypropylene [PP], basalt, cellulose and indented short-length steel) on hardened state properties were evaluated. These evaluations were expressed in terms of the compressive and flexural strengths, ultrasonic pulse velocity, mass changes, drying shrinkage and efflorescence. Then, the impacts of aggressive conditions on the hardened properties of fibre-reinforced alkali-activated concretes were evaluated under carbonation, high temperature and freeze/thaw tests. The results showed that using carbonated BOF slag aggregates led to obtain higher strength than using normal aggregates in alkali activated concretes. Moreover, the maximum enhancement due to reinforcing the mixtures was recorded in alkali-activated concretes with steel fibres.


Author(s):  
Md Azree Othuman Mydin ◽  
Mohd Nasrun Mohd Nawi ◽  
Muhammad Arkam Che Munaaim ◽  
Othman Mohamed

Presently there is increasing attention in utilization foamcrete as a lightweight non-structural and semi-structural element in buildings to take advantage of its excellent insulation properties. Though, foamcrete has been noticed to have some disadvantages: considerable brittleness; results in low compressive and flexural strength, poor fracture toughness, poor resistance to crack propagation and low impact strength. Hence this study is intended to look into the potential of oil palm trunk (OPT) fiber in enhancing the engineering properties of foamcrete. There are 2 engineering properties will be focused in this study which are ultrasonic pulse velocity and drying shrinkage. Two densities of foamcrete of 600 kg/m3, 1200 kg/m3 were cast and tested. The ratio of cement, sand and water used in this study was 1:1.5:0.45. OPT fibers were used as additives at 0.15%, 0.30%, 0.45% and 0.60% by volume of the total mix. Test results indicated that the engineering properties of foamcrete reinforced with OPT fiber had amplified thoroughly.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6951
Author(s):  
Maciej Miturski ◽  
Wojciech Sas ◽  
Algirdas Radzevičius ◽  
Raimondas Šadzevičius ◽  
Rytis Skominas ◽  
...  

One of the fundamental techniques for road subgrades is soil stabilization. Considering the high emission of carbon dioxide during the production of binders, novel techniques to reduce the binder are being studied. Thus, we investigated dispersed reinforcement in stabilized soils. A study was conducted to determine the ultrasonic pulse velocity in nine mixtures of soil, cement, and polypropylene fibers and then correlate the results with other destructive tests. The results show a decrease in wave velocity in mixes with fiber addition by up to 18.5%. The result is dependent on the curing time and whether the samples were stored in a water tank. Immersion in water increases the obtained results by about 6.3%. Based on the analysis, for mixtures with fibers, boundary velocities of waves above which lower values of modulus of elasticity were obtained were determined. Depending on the mix and the module analyzed, the limits range from 2194 m/s to 2498 m/s.


2021 ◽  
Vol 11 (14) ◽  
pp. 6388
Author(s):  
Javier Ibáñez-Gosálvez ◽  
Teresa Real-Herraiz ◽  
José Marcos Ortega

In order to improve the contribution to sustainability of cement production, several strategies have been developed, such as the incorporation of additions as clinker replacement. Regarding the production of commercial cements with additions, those made with binary binders are mostly produced. However, the use of ternary binders for manufacturing commercial cements is still very low, at least in Spain, and they could also be an adequate solution for producing eco-friendly cements. The objective of this research is to study the effects in the long term produced by ternary binders which combine the additions of blast furnace slag, fly ash and limestone in the microstructure, durability and mechanical performance of mortars, compared to mortars without additions and mortars made with binary binders. The ternary and binary binders accomplished the prescriptions for a cement type CEM II/B. The microstructure was characterized using mercury intrusion porosimetry, electrical resistivity and differential thermal analysis. Absorption after immersion, diffusion coefficient, mechanical strengths and ultrasonic pulse velocity were studied. The best performance was noted for ternary binder with both slag and fly ash, probably produced by the synergetic effects of slag hydration and fly ash pozzolanic reactions. These effects were more noticeable regarding the compressive strength.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1695 ◽  
Author(s):  
Ahmad Alzaza ◽  
Mohammad Mastali ◽  
Paivo Kinnunen ◽  
Lidija Korat ◽  
Zahra Abdollahnejad ◽  
...  

This experimental study aimed to develop a fiber-reinforced lightweight mineral wool-based alkali activated mortar. The lightweight mineral wool-based alkali activated mortars were produced using premade foam and reinforced by polypropylene (PP) fibers. They were assessed in terms of fresh and hardened-state properties. Fresh-state properties were investigated by mini-slump tests. Hardened-state characteristics were assessed by ultrasonic pulse velocity, dry density, compressive and flexural strengths, drying shrinkage, efflorescence, water absorption, and permeable porosity. For the first time, the resistance of the synthesized lightweight mineral wool-based alkali activated mortars against harsh conditions (carbonation, freeze and thaw, and high temperature) were evaluated. The porous structures of the developed lightweight alkali activated mortars were also analyzed using an X-ray micro-computed tomography (CT) technique. Lightweight mix compositions with densities in a range of 770–1510 kg/m3, compressive strengths of 1–9 MPa, and flexural strengths of 2.6–8 MPa were developed. Increases in both density and strength after carbonation were also recorded, while a decrease of strength was noticed after exposure to freeze/thaw and high temperatures of up to 500 °C.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5937
Author(s):  
Javier Ibáñez-Gosálvez ◽  
Teresa Real-Herraiz ◽  
José Marcos Ortega

The use of eco-friendly cements prepared with ternary binders could contribute to improving the sustainability of cement production. However, their use for manufacturing commercial cements is very low, at least in Spain. The purpose of this research is to study the behavior in the long term of mortars made with ternary binders which incorporated ground granulated blast furnace slag, fly ash, and limestone, exposed to environmental conditions compatible with the specifications of exposure class XC3 of the Eurocode 2, compared to mortars without additions and mortars with binary binders. The exposure station was placed in an underground floor of a building used as a garage with circulation of vehicles and moderately high CO2 concentration. The ternary and binary binders verified the prescriptions of cement type CEM II/B. The microstructure was characterized using mercury intrusion porosimetry and electrical resistivity. Water absorption, diffusion coefficient, carbonation depth, mechanical strengths, and ultrasonic pulse velocity were determined. A loss of microstructure refinement with time was noted for all the analyzed binders, probably related to the development of carbonation and drying shrinkage. The binary mortars with slag and fly ash and the ternary binder which combined them showed the best mechanical performance at 250 days.


Sign in / Sign up

Export Citation Format

Share Document