scholarly journals A Study on the Influence of Oil Palm Trunk Fiber on Ultrasonic Pulse Velocity (UPV) and Shrinkage of Foamcrete

Author(s):  
Md Azree Othuman Mydin ◽  
Mohd Nasrun Mohd Nawi ◽  
Muhammad Arkam Che Munaaim ◽  
Othman Mohamed

Presently there is increasing attention in utilization foamcrete as a lightweight non-structural and semi-structural element in buildings to take advantage of its excellent insulation properties. Though, foamcrete has been noticed to have some disadvantages: considerable brittleness; results in low compressive and flexural strength, poor fracture toughness, poor resistance to crack propagation and low impact strength. Hence this study is intended to look into the potential of oil palm trunk (OPT) fiber in enhancing the engineering properties of foamcrete. There are 2 engineering properties will be focused in this study which are ultrasonic pulse velocity and drying shrinkage. Two densities of foamcrete of 600 kg/m3, 1200 kg/m3 were cast and tested. The ratio of cement, sand and water used in this study was 1:1.5:0.45. OPT fibers were used as additives at 0.15%, 0.30%, 0.45% and 0.60% by volume of the total mix. Test results indicated that the engineering properties of foamcrete reinforced with OPT fiber had amplified thoroughly.

2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2018 ◽  
Vol 928 ◽  
pp. 257-262 ◽  
Author(s):  
Trong Phuoc Huynh ◽  
Chao Lung Hwang ◽  
Si Huy Ngo

This paper presents the results of the experimental works to investigate the use of waste limestone from water treatment industry as fine aggregate in green concrete. Two concrete mixtures with a constant water-to-binder ratio of 0.3 were prepared for this investigation, in which, the normal concrete mixture was designed following the guidelines of ACI 211 standard, while the green concrete mixture was designed using densified mixture design algorithm (DMDA) technology. For comparison, both types of concrete samples were subjected to the same test program, including fresh properties, compressive strength, strength efficiency of cement, drying shrinkage, electrical surface resistivity, ultrasonic pulse velocity, and thermal conductivity. Test results indicate that both concrete mixtures showed the excellent workability due to the round-shape of waste limestone aggregate and the use of superplasticizer. In addition, the green concrete mixture exhibited a better performance in terms of engineering properties and durability in comparison with the normal concrete mixture. The results of the present study further support the recycling and reuse of waste limestone as fine aggregate in the production of green concrete.


2020 ◽  
Vol 25 (1) ◽  
pp. 12
Author(s):  
Fajar Surya Herlambang ◽  
Evin Yudhi Setyono

Some research on the Ultrasonic Pulse Velocity (UPV) test has not covered much about the problems encountered during the data collection process. Based on experience using UPV test equipment, it is known that instability occurs in reading the test results. This is caused by the inability of the operator, in maintaining the stability of the transducer both in its position and pressure, especially in the measurement with the overhead position. Therefore, in this study a tool was made to make the transducer stable in the test position. Comparison of measurement results shows that, the uncertainty of wave velocity measurement decreases from the range of 4% -17% to 0.2% -0.4%. Meanwhile, the uncertainty of measurement of wave travel time decreased from the range of 0.8% -14% to 0.1% -0.4%. This can be interpreted that, the level of accuracy of measurements using a transducer stabilizer is 99.6% -99.9%. Thus, the use of transducer stabilizers is believed to be able to improve measurement accuracy.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 284 ◽  
Author(s):  
M A. Othuman Mydin ◽  
N Mohd Zamzani

This paper emphasis on experimental investigation to govern the engineering properties such as young’s modulus, pundit ultrasonic pulse velocity (UPV) and ductility of High Performance Concrete (HPC) with grade M60 with addition of coconut fibre (CNF) together with silica fume (SF) and pulverised fuel ash (PFA). For this study, 3 mixes were prepared. First was the CNFRC without any additives, secondly the CNFRC made by 10% replacement of cement weight with PFA and thirdly composition of 10% of cement weight was exchanged with SF. It should be pointed out that for each mix; CNF was included in the mixture (0.5% of the mix volume). The investigational results had shown that the Young’s modulus of CNFRC, CNFR SFC and CNFR PFAC enhanced by about 6%, 3%, and 12% correspondingly. In terms of ductility, when control HPC specimens were subjected to axial compressive strength, slight preliminary cracks shaped on the surface of specimens. Among all HPC specimens tested, CNFR PFAC attained the utmost UPV at 28 day.    


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1288 ◽  
Author(s):  
Mohammad Mastali ◽  
Ahmad Alzaza ◽  
Khaled Mohammad Shaad ◽  
Paivo Kinnunen ◽  
Zahra Abdollahnejad ◽  
...  

This experimental study aimed to develop alkali-activated concretes containing carbonated basic oxygen furnace (BOF) slag aggregates. In the first stage, the impacts of replacing normal aggregates with carbonated BOF slag aggregates in different alkali-activated concretes were determined by assessing mechanical properties (compressive and flexural strengths), morphology, thermogravimetric analyses (TGA), differential thermogravimetry (DTG) and the crystalline phases using X-ray diffraction analysis. Second, the developed plain alkali-activated concrete was reinforced by different fibre types and dosages to limit the negative impacts of the drying shrinkage and to improve strength. Therefore, the effects of using different fibre contents (1% and 1.5% in Vol.) and types (Polyvinyl alcohol [PVA], Polypropylene [PP], basalt, cellulose and indented short-length steel) on hardened state properties were evaluated. These evaluations were expressed in terms of the compressive and flexural strengths, ultrasonic pulse velocity, mass changes, drying shrinkage and efflorescence. Then, the impacts of aggressive conditions on the hardened properties of fibre-reinforced alkali-activated concretes were evaluated under carbonation, high temperature and freeze/thaw tests. The results showed that using carbonated BOF slag aggregates led to obtain higher strength than using normal aggregates in alkali activated concretes. Moreover, the maximum enhancement due to reinforcing the mixtures was recorded in alkali-activated concretes with steel fibres.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012054
Author(s):  
Ragini Kondalkar ◽  
Nikhil H. Pitale ◽  
K.R. Dabhekar ◽  
D.P. Mase

Abstract In India there are infinite old structures that are at the verge of damages. There are many buildings which have reduced their strength due to time passes, due to deterioration of concrete from structural element, due to development of cracks. The structure is a combination of load carrying members, damages in members cause failure of structure and it is harmful for living beings. To prevent old structure from failure the technique is adopted know as Non-Destructive Testing (NDT). With the help of non-destructive testing auditing of an old structure is get easier. NDT examine the total health of an infrastructure in order to check strength and stability of building. NDT is a bunch of various testing consist of Ultrasonic pulse velocity test (UPV), Rebound hammer test (RHT), Half-cell test, etc. Conducting NDT on building and analyzing testing result decide to repair building as per IS code, technique like grouting, Retrofitting, etc. to increase strength and stability of building. In this project structural has to be done on old structure which is situated at Nagpur. Audit done by NDT consist of Ultra-sonic pulse velocity test, Rebound hammer test, Half-cell test. After analyzing all test result including visual inspection it is found that structure need to repair and retrofitted to make it safe and stable for all static loadings. Column jacketing also provide to structure.


2021 ◽  
Vol 56 (5) ◽  
pp. 90-106
Author(s):  
Taufiq Rochman ◽  
Suhariyanto

This study aims at the structural evaluation of the elevated concrete water tank condition, including crack initiation, through nondestructive testing. The growing demands for environmental quality have resulted in a rise in the design and construction of tanks and reservoirs in the construction industry. Cracks for water line leakage were found during watertight testing in concrete tanks. Long-term liquid leaking may permanently damage the tank and can contaminate the groundwater. Given the critical existence of leaked cracks in tank serviceability and durability, the contribution examines the triggers and effects of their occurrence. An inspection of the existing water tank system is conducted to ascertain its condition. The investigation included structural design checks, concrete compressive strength tests, visual assessments, hammer inspections, and Ultrasonic Pulse Velocity (UPV) testing with Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT). This observation is made at many elevations on various sampling points on the tank structure's elements, including columns, beams, tank floor slabs, and tank wall shells. The results indicate the presence of flexural type cracks in the main beam's middle span and diagonal beams. Additionally, cracks attributed to long-term drying shrinkage were discovered on the diagonal of the floor slab and cracks of the same pattern on the main beam's middle span. The deflection estimated by structural remodeling was larger than the deflection estimated by design. The computed crack width in the main and diagonal beam exceeds the acceptable crack width.


Author(s):  
Darmono Darmono ◽  
Maris Setyo Nugroho ◽  
Slamet Widodo ◽  
Faqih Ma’arif

ABSTRAKPenelitian bertujuan untuk mengetahui mechanical properties material kayu Bangunan Cagar Budaya dengan non-destructive test. Penelitian ini menggunakan metode pengujian lansung dilapang menggunakan Ultrasonic Pulse Velocity (UPV). Terdapat dua variable yang digunakan yaitu kolom cacat dan kolom utuh untuk mengetahui perbedaan nilai cepat rambat gelombang. Jumlah sampel yang digunakan sebanyak enam buah dengan pengambilan data masing-masing sampel sebanyak lima kali. Hasil pengujian menunjukkan bahwa nilai kadar air dan berat jenis kayu sebesar 15,03% dan 0,62. Sedangkan hasil pengujian UPV pada kolom cacat dan utuh diperoleh cepat rambat gelombang sebesar 0,71 km/s dan 1,21 km/s. Berdasarkan hasil analisis menunjukkan bahwa nilai MOEd pada kolom utuh sebesar 9.374,37 MPa, sedangkan MOEd pada kolom cacat sebesar 3.240,62 MPa. Kata kunci: mechanical properties kayu, bangunan cagar budaya, ultrasonic pulse velocity ABSTRACTThis study aims to determine the mechanical properties of the wood material for the Cultural Heritage Building with a non-destructive test. This study used a direct field testing method using Ultrasonic Pulse Velocity (UPV). There are two variables used, namely the defective column and the solid column to determine the difference in the value of the fast propagation of the waves. The number of samples used was six with data collection for each sample five times. The test results showed that the moisture content and density of wood were 15.03% and 0.62. While the UPV test results on defective and solid columns obtained wave propagation velocity of 0.71 km / s and 1.21 km / s. Based on the analysis result, it shows that the MOEd value in the whole column is 9,374.37 MPa, while the MOEd in the defective column is 3,240.62 MPa. Keywords: mechanical properties of wood, cultural heritage buildings, ultrasonic pulse velocity


Sign in / Sign up

Export Citation Format

Share Document