scholarly journals THE GENERAL LANCHESTER MODEL DEFINING MULTILATERAL CONFLICTS

Author(s):  
Sergey I. Makarenko ◽  
◽  
Ilya E. Afonin ◽  
Oleg A. Kopichev ◽  
Alina S. Mamonchikova ◽  
...  

The analysed studies of combat simulation shows that the theory of dynamic systems, in particular the Lanchester model, is used for dynamic simulation of military conflicts. A large number of Lanchester models, each of which takes into account particular and specific factors, has already existed. However, these models examine a symmetric bilateral conflict. At the same time, in the Lanchester models class there are no models of multilateral conflicts. The purpose of the paper is to form the generalized Lanchester model of a multilateral conflict. The elements of scientific novelty of this model are to take into account different strategies of parties in a multilateral conflict and different conflict levels for the strategies. This model allows us to study the dynamics of resources changes of the conflict parties, to identify local wins and losses in the transition mode of the model, to draw conclusions about the global wins and losses of the parties, to form recommendations about choice of the parties’ strategies and the values of the parameters of their strategies for achieving a global win. The article outlines the ways for further research on the development of this generalized Lanchester model.

Author(s):  
Jeha Ryu ◽  
Sang Sup Kim ◽  
Sung-Soo Kim

Abstract This paper presents a criterion for determining whether or not a flexible multibody dynamic system reveals stress stiffening effects. In the proposed criterion, the eigenvalue variation that results from adding the modal stress stiffness matrix to the conventional linear modal stiffness matrix is examined numerically before actual dynamic simulation. If the variation is sufficiently large for any flexible body, then stress stiffening effects are said to be significant and must be included in dynamic simulation of flexible multibody systems. Since the criterion uses the most general stress stiffness matrix, which can be represented as a function of applied and constraint reaction loads as well as of a system of 12 inertial loads, this criterion is applicable to any general flexible multibody dynamic systems. Several numerical results are presented to show the effectiveness of the proposed criterion.


2012 ◽  
Vol 232 ◽  
pp. 527-531 ◽  
Author(s):  
L. Ángel ◽  
M.P. Pérez ◽  
C. Díaz-Quintero ◽  
C. Mendoza

In this paper a dynamic simulation methodology of systems is presented by using ADAMS/MATLAB co-simulation. This methodology allows simulation, development and validation of different control strategiesfor robotic manipulator models in a fast way. It provides a first stage into the design of robotic prototypes for researchers and professionals. Finally, the methodology was validated by constructing a simulation model of a double pendulum and by implementing a PD type control strategy.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Fritz Stöckli ◽  
Kristina Shea

Passive dynamic systems have the advantage over conventional robotic systems that they do not require actuators and control. Brachiating, in particular, involves the swinging motion of an animal from one branch to the next. Such systems are usually designed manually by human designers and often are bio-inspired. However, a computational design approach has the capability to search vast design spaces and find solutions that go beyond those possible by manual design. This paper addresses the automated design of passive dynamic systems by introducing a graph grammar-based method that integrates dynamic simulation to evaluate and evolve configurations. In particular, the method is shown to find different, new solutions to the problem of the design of two-dimensional passive, dynamic, continuous contact, brachiating robots. The presented graph grammar rules preserve symmetry among robot topologies. A separation of parametric multi-objective optimization and topologic synthesis is proposed, considering four objectives: number of successful swings, deviation from cyclic motion, required space, and number of bodies. The results show that multiple solutions with varying complexity are found that trade-off cyclic motion and the space required. Compared to research on automated design synthesis of actuated and controlled robotic systems, this paper contributes a new method for passive dynamic systems that integrates dynamic simulation.


Author(s):  
Fritz R. Stöckli ◽  
Kristina Shea

Topologic configurations of passive dynamic locomotion robots are usually designed manually by human designers and often bio-inspired. However, it is possible that, among the large number of possible configurations, some valid solutions to the problem exist that are potentially superior to existing solutions and, at the same time, different from bio-inspired or otherwise intuition-inspired configurations, and thus not likely discovered without an automated design method. This paper addresses the problem of the automated design of passive dynamic systems in general by introducing a graph grammar based method that integrates dynamic simulation to evaluate and evolve configurations. In particular, the method is shown to find different, new solutions to the problem of the design of two-dimensional passive dynamic continuous contact brachiating robots. Brachiating is the swinging locomotion of primates moving from one tree branch to the next. The presented graph grammar rules preserve system properties among robot topologies, which makes it possible to maintain the necessary symmetry of the brachiating configurations. A separation of parametric optimization and topologic synthesis actions is proposed for the synthesis of passive dynamic systems. Compared to research on automated synthesis of robot topologies that use dynamic simulation to evaluate actuated and controlled robotic systems, this paper contributes a method to automatically generate alternative topologies for passive dynamic systems, which do not draw energy from a power source.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xiangyong Chen ◽  
Jianlong Qiu

This paper concerns the optimal reinforcement game problem between two opposing forces in military conflicts. With some moderate assumptions, we employ Lanchester equation and differential game theory to develop a corresponding optimization game model. After that, we establish the optimum condition for the differential game problem and give an algorithm to obtain the optimal reinforcement strategies. Furthermore, we also discuss the convergence of the algorithm. Finally, a numerical example illustrates the effectiveness of the presented optimal schemes. Our proposed results provide a theoretical guide for both making warfare command decision and assessing military actions.


Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


2019 ◽  
Vol 133 (22) ◽  
pp. 2317-2327 ◽  
Author(s):  
Nicolás Gómez-Banoy ◽  
James C. Lo

Abstract The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the “classic” adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose–pancreatic β cell axis.


2010 ◽  
Vol 19 (3) ◽  
pp. 68-74 ◽  
Author(s):  
Catherine S. Shaker

Current research on feeding outcomes after discharge from the neonatal intensive care unit (NICU) suggests a need to critically look at the early underpinnings of persistent feeding problems in extremely preterm infants. Concepts of dynamic systems theory and sensitive care-giving are used to describe the specialized needs of this fragile population related to the emergence of safe and successful feeding and swallowing. Focusing on the infant as a co-regulatory partner and embracing a framework of an infant-driven, versus volume-driven, feeding approach are highlighted as best supporting the preterm infant's developmental strivings and long-term well-being.


2016 ◽  
Vol 21 (6) ◽  
pp. 5-11
Author(s):  
E. Randolph Soo Hoo ◽  
Stephen L. Demeter

Abstract Referring agents may ask independent medical evaluators if the examinee can return to work in either a normal or a restricted capacity; similarly, employers may ask external parties to conduct this type of assessment before a hire or after an injury. Functional capacity evaluations (FCEs) are used to measure agility and strength, but they have limitations and use technical jargon or concepts that can be confusing. This article clarifies key terms and concepts related to FCEs. The basic approach to a job analysis is to collect information about the job using a variety of methods, analyze the data, and summarize the data to determine specific factors required for the job. No single, optimal job analysis or validation method is applicable to every work situation or company, but the Equal Employment Opportunity Commission offers technical standards for each type of validity study. FCEs are a systematic method of measuring an individual's ability to perform various activities, and results are matched to descriptions of specific work-related tasks. Results of physical abilities/agilities tests are reported as “matching” or “not matching” job demands or “pass” or “fail” meeting job criteria. Individuals who fail an employment physical agility test often challenge the results on the basis that the test was poorly conducted, that the test protocol was not reflective of the job, or that levels for successful completion were inappropriate.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


Sign in / Sign up

Export Citation Format

Share Document