scholarly journals PROFIL SALINITAS DAN SUHU DI TELUK MANADO PADA HARI-HARI HUJAN DAN TIDAK HUJAN

2012 ◽  
Vol 8 (3) ◽  
pp. 95
Author(s):  
Patrice NI Kalangi ◽  
Kawilarang WA Masengi ◽  
Masamitsu Iwata ◽  
Fransisco PT Pangalila ◽  
Ixchel F Mandagi

Pengukuran salinitas dan suhu perairan dilakukan pada hari-hari hujan dan tidak hujan di dua tempat di perairan Teluk Manado, yang memiliki lima sungai utama di pinggirannya, untuk menyelidiki profil vertikal dari salinitas dan suhu, serta ketebalan air tawar. Profil salinitas dan suhu perairan pada hari yang sama di kedua tempat adalah mirip. Pada hari-hari hujan, salinitas rata-rata lapisan permukaan perairan adalah 33,9 lebih rendah 0,3 dibandingkan pada hari-hari tidak hujan. Salinitas permukaan ini setara dengan ketebalan lapisan air tawar sebesar 0,45 m. di lapisan permukaan, profil suhu cukup mirip. Akan tetapi, pada lapisan yang lebih dalam, suhu berosilasi pada fase yang berbeda dengan bertambahnya kedalaman. Kata kunci: ketebalan lapisan air tawar, termoklin, Bunaken.   Salinity and temperature measurements were carried out on rainy days and non rainy days in two locations in Manado Bay, which is the outlet of fresh water masses from five main rivers, to investigate vertical profiles of salinity and temperature, and the thickness of the fresh water layer. Same day salinity and temperature profiles in both places is similar. On rainy days, the average salinity in the surface layer was 33.9, 0.3 lower than that of non rainy days. The surface salinity is equivalent to the thickness of the freshwater layer thickness of 0.45 m. In the surface layer, the temperature profile is quite similar. However, in the deeper layers, the temperature oscillates at different phases according to the increasing depths. Keywords: freshwater thickness, thermocline, Bunaken.

1974 ◽  
Vol 13 (68) ◽  
pp. 243-254 ◽  
Author(s):  
Gary T. Jarvis ◽  
Garry K. C. Clarke

Ice temperature measurements have been made in Steele Glacier to a depth of 114 m. All measured temperatures were below 0° C, the coldest being –6.5° C at a depth of 114 m. The temperature profile indicates an anomalously warm layer of ice between 30 m and 50 m, which is probably due to the freezing of water in crevasses opened during the 1965–66 surge. A two-dimensional model of a cold glacier with partially water-filled crevasses predicts temperature profiles very similar to that observed.


1974 ◽  
Vol 13 (68) ◽  
pp. 243-254 ◽  
Author(s):  
Gary T. Jarvis ◽  
Garry K. C. Clarke

Ice temperature measurements have been made in Steele Glacier to a depth of 114 m. All measured temperatures were below 0° C, the coldest being –6.5° C at a depth of 114 m. The temperature profile indicates an anomalously warm layer of ice between 30 m and 50 m, which is probably due to the freezing of water in crevasses opened during the 1965–66 surge. A two-dimensional model of a cold glacier with partially water-filled crevasses predicts temperature profiles very similar to that observed.


2021 ◽  
Author(s):  
◽  
T. G. L. Shirtcliffe

<p>The temperature profiles of certain lakes in Taylor Valley, Victoria Land, Antarctica, are shown to be consistent with the hypothesis that these lakes were formerly cold brine pools; that their levels were raised by the addition of fresh water; and that they have since been heated principally by the absorption of sunlight. The temperature profile of a lake in Wright Valley, Victoria Land, is shown to be consistent with the hypothesis that this lake was formerly warm and stable, as are those Taylor Valley lakes which were analysed; that the addition of a further large quantity of fresh water caused instability and limited convection; and that the heat source is again absorbed sunlight. The study of this lake requires an understanding of convection in the presence of a gradient of solute concentration. A survey of existing knowledge of this type of convection shows that it is inadequate for the task. Experiments which provide the necessary information are described.</p>


2013 ◽  
Vol 19 (No. 3) ◽  
pp. 111-120 ◽  
Author(s):  
J. Houšová ◽  
K. Hoke

A simple 1-D mathematical model for prediction of local temperatures in a layer of solid material during microwave heating (Hou&scaron;ov&aacute; et al. 1998) and a sensitivity analysis were used to evaluate the influence of process and material parameters on vertical temperature profiles in a layer of material during heating. The results of calculations are presented in graphs and discussed. The incident microwave power and heat capacity and density of heated material are parameters with great effect on all local and average temperatures and local and average heating rates. The shape of temperature profile is influenced only to a small extent by a change in the value of applied microwave power and also in the value of heat capacity or density of heated material. The whole profiles shift to higher or lower temperature values when the incident microwave power is changing. The distribution of applied microwave power between the upper and bottom layer surface very much influences the shape of the profile and the values and position of the highest and the lowest temperature in the layer. Depth of penetration and thermal conductivity of heated material influence on the shape of temperature profiles and the temperature spread in the layer (evenness of temperature distribution). Effect of penetration depth also depends on the relation to the layer thickness &ndash; its effect increases with the increasing layer thickness. At the low values of penetration depth relative to the layer thickness, an uneven temperature profile is to be expected. Effect of thermal conductivity value on temperature profile depends on the time of heating. Because of a short time of microwave heating, the effect of this parameter on temperature distribution is smaller compared to the conventional heating methods. At the beginning of heating its influence is quite negligible. Temperature of the air surrounding the layer and intensity of heat exchange between the air and layer surface are parameters with only small local effect on temperature distribution.


2021 ◽  
Author(s):  
◽  
T. G. L. Shirtcliffe

<p>The temperature profiles of certain lakes in Taylor Valley, Victoria Land, Antarctica, are shown to be consistent with the hypothesis that these lakes were formerly cold brine pools; that their levels were raised by the addition of fresh water; and that they have since been heated principally by the absorption of sunlight. The temperature profile of a lake in Wright Valley, Victoria Land, is shown to be consistent with the hypothesis that this lake was formerly warm and stable, as are those Taylor Valley lakes which were analysed; that the addition of a further large quantity of fresh water caused instability and limited convection; and that the heat source is again absorbed sunlight. The study of this lake requires an understanding of convection in the presence of a gradient of solute concentration. A survey of existing knowledge of this type of convection shows that it is inadequate for the task. Experiments which provide the necessary information are described.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehman S. Eon ◽  
Charles M. Bachmann

AbstractThe advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.


2021 ◽  
pp. 1
Author(s):  
Yaru Guo ◽  
Yuanlong Li ◽  
Fan Wang ◽  
Yuntao Wei

AbstractNingaloo Niño – the interannually occurring warming episode in the southeast Indian Ocean (SEIO) – has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced fresh-water transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward fresh-water advection near the eastern boundary, which is critical in causing the strong freshening (> 0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with the El Niño-Southern Oscillation (0.57, 0.77, and 0.70 with Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (-0.27, -0.42, and -0.35) during 1993-2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.


2012 ◽  
Vol 30 (1) ◽  
pp. 27-32 ◽  
Author(s):  
A. Taori ◽  
A. Jayaraman ◽  
K. Raghunath ◽  
V. Kamalakar

Abstract. The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.


2021 ◽  
Author(s):  
Марат Финатович Закиров ◽  
Айрат Шайхуллинович Рамазанов ◽  
Рим Абдуллович Валиуллин ◽  
Рамиль Фаизырович Шарафутдинов

В данной работе исследуется профиль термограммы в зависимости от производительности работающих интервалов вертикальной скважины. Установлено, что существуют уникальные профили температур в зависимости от проявления эффекта калориметрического смешивания. Полученные результаты могут быть использованы для анализа экспериментальных профилей температуры с целью выделения работающих интервалов. In this paper, the thermogram profile is studied depending on the performance of the working intervals of the vertical wells. It is established that there are unique temperature profiles depending on the manifestation of calorimetric mixing. The obtained results can be used to analyze measured temperature profiles in order to identify working intervals.


1994 ◽  
Vol 40 (134) ◽  
pp. 119-124
Author(s):  
R.E. Gagnon

AbstractA stainless-steel platen, with a centrally located pressure sensor on the front face, has been used to crush mono-crystalline, bubble-free fresh-water ice samples. Two electrical conductors, located on the face of the pressure sensor, were connected to a bridge circuit so that the presence of liquid between the two conductors could be detected and its thickness measured. Video records of the ice/ steel contact zone during crushing were obtained by mounting samples on a thick Plexiglas plate which permitted viewing through the specimen to the ice/steel interface. Total load and pressure records exhibited a sawtooth pattern due to the compliance of the ice and the testing apparatus, and spalling of ice from the contact zone. When the region of contact was in the vicinity of the pressure transducer, liquid was detected and peaks occurred in the liquid sensor output when load drops occurred. Contact between the platen and the ice consisted of low pressure zones of highly damaged crushed and/or refrozen ice, opaque in appearance, and transparent, high-pressure regions of relatively undamaged ice. Upper limits for the liquid-layer thickness on the high-pressure undamaged ice were ~3 µm on the ascending sides of the sawteeth in the load records and ~ 21 µ on the sharp descending sides.


Sign in / Sign up

Export Citation Format

Share Document