Self-powered ultraviolet–visible–near infrared perovskite/silicon hybrid photodetectors based on a novel Si/SnO2/MAPbI3/MoO3 heterostructure

2020 ◽  
Vol 13 (12) ◽  
pp. 121001
Author(s):  
Wei Qu ◽  
Shukun Weng ◽  
Liping Zhang ◽  
Min Sun ◽  
Bo Liu ◽  
...  
Keyword(s):  
2021 ◽  
pp. 2001138
Author(s):  
Yichen Mao ◽  
Pengpeng Xu ◽  
Qiang Wu ◽  
Jun Xiong ◽  
Renmiao Peng ◽  
...  
Keyword(s):  

2020 ◽  
Vol 8 (35) ◽  
pp. 12148-12154 ◽  
Author(s):  
Yifan Li ◽  
Yating Zhang ◽  
Tengteng Li ◽  
Xin Tang ◽  
Mengyao Li ◽  
...  

A novel self-powered NIR and THz PTE PD based on a (MAPbI3/PEDOT:PSS) composite with a rapid response time of 28 μs.


2021 ◽  
Author(s):  
Hao Chen ◽  
Lei Lv ◽  
Yanan Wei ◽  
Tianhua Liu ◽  
Song Wang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2460
Author(s):  
Pericle Varasteanu ◽  
Antonio Radoi ◽  
Oana Tutunaru ◽  
Anton Ficai ◽  
Razvan Pascu ◽  
...  

In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs’ surface using the solution processing method. The effectiveness of the proposed architectures is evidenced through extensive experimental and simulation analysis. The AgNWs/SiNHs device showed the highest photo-to-dark current ratio of 2.1 × 10−4, responsivity of 30 mA/W and detectivity of 2 × 1011 Jones along with the lowest noise equivalent power (NEP) parameter of 2.4 × 10−12 WHz−1/2 in the blue light region. Compared to the bare SiNHs device, the AuNWs/SiNHs device had significantly enhanced responsivity up to 15 mA/W, especially in the red and near-infrared spectral region. Intensity-modulated photovoltage spectroscopy (IMVS) measurements revealed that the AgNWs/SiNHs device generated the longest charge carrier lifetime at 470 nm, whereas the AuNWs/SiNHs showed the slowest recombination rate at 627 nm. Furthermore, numerical simulation confirmed the local field enhancement effects at the MeNWs and SiNHs interface. The study demonstrates a cost-efficient and scalable strategy to combine the superior light harvesting properties of SiNHs with the plasmonic absorption of metallic nanowires (MeNWs) towards enhanced sensitivity and spectral-selective photodetection induced by the local surface plasmon resonance effects.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 812
Author(s):  
Dung-Sheng Tsai ◽  
Ping-Yu Chiang ◽  
Meng-Lin Tsai ◽  
Wei-Chen Tu ◽  
Chi Chen ◽  
...  

This work demonstrates a self-powered and broadband photodetector using a heterojunction formed by camphor-based chemical vaper deposition (CVD) bilayer graphene on p-Si substrates. Here, graphene/p-Si heterostructures and graphene layers serve as ultra-shallow junctions for UV absorption and zero bandgap junction materials (<Si bandgap (1.1 eV)) for long-wave near-infrared (LWNIR) absorption, respectively. According to the Raman spectra and large-area (16 × 16 μm2) Raman mapping, a low-defect, >95% coverage bilayer and high-uniformity graphene were successfully obtained by camphor-based CVD processes. Furthermore, the carrier mobility of the camphor-based CVD bilayer graphene at room temperature is 1.8 × 103 cm2/V·s. Due to the incorporation of camphor-based CVD graphene, the graphene/p-Si Schottky junctions show a good rectification property (rectification ratio of ~110 at ± 2 V) and good performance as a self-powered (under zero bias) photodetector from UV to LWNIR. The photocurrent to dark current ratio (PDCR) value is up to 230 at 0 V under white light illumination, and the detectivity (D*) is 8 × 1012 cmHz1/2/W at 560 nm. Furthermore, the photodetector (PD) response/decay time (i.e., rise/fall time) is ~118/120 μs. These results support the camphor-based CVD bilayer graphene/Si Schottky PDs for use in self-powered and ultra-broadband light detection in the future.


2021 ◽  
Author(s):  
Yong Lei ◽  
Xiao-Zhan Yang ◽  
Wenlin Feng

Abstract Van der Waals heterostructures based on the combination of 2D transition metal dichalcogenides (TMDCs) and conventional semiconductors offer new opportunities for the next generation of optoelectronics. In this work, the sulfurization of Mo film is used to synthesize vertically-aligned MoS2 nanofilm (V-MoS2) with wafer-size and layer controllability. The V-MoS2/n-Si heterojunction was fabricated by using a 20-nm thickness V-MoS2, and the self-powered broadband photodetectors covering from deep ultraviolet to near infrared is achieved. The device shows superior responsivity (5.06 mA/W), good photodetectivity (5.36×1011 Jones) and high on/off ratio Ion/Ioff (8.31 ×103 at 254 nm). Furthermore, the V-MoS2/n-Si heterojunction device presents a fast response speed with the rise time and fall time being 54.53 ms and 97.83 ms, respectiveely. The high photoelectric performances could be attributed to the high-quality heterojunction between the V-MoS2 and n-Si. These findings suggest that the V-MoS2/n-Si heterojunction has great potential applications in the deep ultraviolet-near infrared detection field, and might be used as a part of the construction of integrated optoelectronic systems.


Sign in / Sign up

Export Citation Format

Share Document