scholarly journals Vital Sign Monitor Device Equipped with a Telegram Notifications Based on Internet of Thing Platform

Author(s):  
Agatha Putri Juniar Putri Juniar Santoso ◽  
Sari Luthfiyah ◽  
Tri Bowo Indrato ◽  
Michelle Omoogun

Vital Sign Monitor is a tool used to diagnose a patient who needs intensive care to know the condition of the patient. Parameters used in monitoring the patient's condition include body temperature and respiration. The contribution of this research designed a vital sign monitoring tool with IoT-based notifications so that remote monitoring can be done by utilizing web Thinger.io, LCD, RGB LEDs as a display of the results of the study and notify telegrams if it becomes abnormal to the patient's condition. Therefore, in order to produce accurate data in the process of data retrieval, a relaxed position of the patient is required and the stability of the wi-fi network so that monitoring is not hampered. The study used the DS18B20 digital temperature sensor placed on the axilla and the piezoelectric sensor placed on the abdomen of the patient. The results of the study were obtained by taking data on patients. The resulting temperature value will be compared to the thermometer, which produces the highest error value of 0.56%, which is still possible because the tolerance limit is 1oC. and for the collection of respiration values that have been compared to the patient monitor obtained the highest error value of 6.2%, which is still feasible because the tolerance limit is 10%. In this study, there is often a crash library between the temperature sensor and other sensors, so for further research, recommend to replacing the temperature sensor

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1700
Author(s):  
Anca Mihaela Vasile (Dragan) ◽  
Alina Negut ◽  
Adrian Tache ◽  
Gheorghe Brezeanu

An EEPROM (electrically erasable programmable read-only memory) reprogrammable fuse for trimming a digital temperature sensor is designed in a 0.18-µm CMOS EEPROM. The fuse uses EEPROM memory cells, which allow multiple programming cycles by modifying the stored data on the digital trim codes applied to the thermal sensor. By reprogramming the fuse, the temperature sensor can be adjusted with an increased trim variation in order to achieve higher accuracy. Experimental results for the trimmed digital sensor showed a +1.5/−1.0 ℃ inaccuracy in the temperature range of −20 to 125 ℃ for 25 trimmed DTS samples at 1.8 V by one-point calibration. Furthermore, an average mean of 0.40 ℃ and a standard deviation of 0.70 ℃ temperature error were obtained in the same temperature range for power supply voltages from 1.7 to 1.9 V. Thus, the digital sensor exhibits similar performances for the entire power supply range of 1.7 to 3.6 V.


2010 ◽  
Vol 29-32 ◽  
pp. 349-353
Author(s):  
Jing Tang ◽  
En Xing Zheng

The paper designs a temperature control system based on AT89C51 and DS18B20. The design uses the DS18B20 digital temperature sensor as the temperature acquisition unit and the AT89C51 microcontroller unit to control them, not only have the advantages that easy to control and with good flexibility, but also can greatly enhance the controlled temperature index.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 291 ◽  
Author(s):  
Endrowednes Kuantama ◽  
Ioan Tarca ◽  
Simona Dzitac ◽  
Ioan Dzitac ◽  
Radu Tarca

Quadcopter flight stability is achieved when all of the rotors–propellers generate equal thrust in hover and throttle mode. It requires a control system algorithm for rotor speed adjustment, which is related with the translational vector and rotational angle. Even with an identical propeller and speed, the thrusts generated are not necessarily equal on all rotors–propellers. Therefore, this study focuses on developing a data logger to measure thrust and to assist in flight control on a symmetrically-structured quadcopter. It is developed with a four load cells sensor with two-axis characterizations and is able to perform real-time signal processing. The process includes speed adjustment for each rotor, trim calibration, and a proportional integral derivative (PID) control tuning system. In the data retrieval process, a quadcopter was attached with data logger system in a parallel axis position. Various speeds between 1200 rpm to 4080 rpm in throttle mode were analyzed to determine the stability of the resulting thrust. Adjustment result showed that the thrust differences between the rotors were less than 0.5 N. The data logger showed the consistency of the thrust value and was proved by repeated experiments with 118 s of sampling time for the same quadcopter control condition. Finally, the quadcopter flight stability as the result of tuning process by the thrust data logger was validated by the flight controller data.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6389
Author(s):  
Kyriakos Koritsoglou ◽  
Vasileios Christou ◽  
Georgios Ntritsos ◽  
Georgios Tsoumanis ◽  
Markos G. Tsipouras ◽  
...  

In this work, a regression method is implemented on a low-cost digital temperature sensor to improve the sensor’s accuracy; thus, following the EN12830 European standard. This standard defines that the maximum acceptable error regarding temperature monitoring devices should not exceed 1 °C for the refrigeration and freezer areas. The purpose of the proposed method is to improve the accuracy of a low-cost digital temperature sensor by correcting its nonlinear response using simple linear regression (SLR). In the experimental part of this study, the proposed method’s outcome (in a custom created dataset containing values taken from a refrigerator) is compared against the values taken from a sensor complying with the EN12830 standard. The experimental results confirmed that the proposed method reduced the mean absolute error (MAE) by 82% for the refrigeration area and 69% for the freezer area—resulting in the accuracy improvement of the low-cost digital temperature sensor. Moreover, it managed to achieve a lower generalization error on the test set when compared to three other machine learning algorithms (SVM, B-ELM, and OS-ELM).


2014 ◽  
Vol 595 ◽  
pp. 232-236
Author(s):  
Guo Jun Xu ◽  
Jing Zhang ◽  
Zhao Yang Yang ◽  
Ti Yin Li

The principle and the realization method of the temperature measuring system which based on the temperature data acquisition chip-DS18B20 and the serial communication chip MAX1480B were introduced. Hardware principle diagram, software flow chart and main subprogram are also given. The dependability of the system was strengthened by using visualization technology and ionic smoke sensing technology.


Sign in / Sign up

Export Citation Format

Share Document