scholarly journals Central Monitor Based on Personal Computer Design with SpO2 and Body Temperature Parameters Using Wireless Xbee Pro

Author(s):  
I KOMANG YOGI MAHARDIKA ◽  
Bambang Guruh Irianto ◽  
Torib Hamzah ◽  
Shubhrojit Misra

Central patient monitor that is not real-time and continues will cause inaccuracies monitoring results and also sending data that is still using cable will cause limited distance. The purpose of this research is to design a central monitoring based personal computer via Xbee Pro. The contribution of this research is,  the system works in real-time and continues, more parameters, using wireless, longer transmission distances. So that monitoring can be done in real-time and continue via wireless with more distance, then the wireless system uses the Xbee Pro module which has larger output power and uses the same number of wireless modules between transmitter and receiver. Body temperature was measured using the LM35 sensor and oxygen saturation in the blood was measured using the MAX30100 sensor. Data is sent using Xbee Pro and displayed on a personal computer. At the distance of receiving data approximately 25 meters with a wall divider, obtained results of smooth monitoring without any loss of data. The results showed that the average SpO2 error value was 0.34% in module 1 and 0.68% in module 2. The average value of body temperature error was 0.46% in module 1 and 0.72% in module 2. The results of this research can be implemented in a centralized patient monitoring system at the hospital, making it easier for health workers to monitor multiple patients, with the results of monitoring in real-time and continue, more parameters, via wireless with greater distance.

Author(s):  
Isna Fatimatuz Zahra ◽  
I Dewa Gede Hari Wisana ◽  
Priyambada Cahya Nugraha ◽  
Hayder J Hassaballah

Acute myocardial infarction, commonly referred to as a heart attack, is the most common cause of sudden death where a monitoring tool is needed that is equipped with a system that can notify doctors to take immediate action. The purpose of this study was to design a heart attack detection device through indicators of vital human signs. The contribution of this research is that the system works in real-time, has more parameters, uses wireless, and is equipped with a system to detect indications of a heart attack. In order for wireless monitoring to be carried out in real-time and supported by a detection system, this design uses a radio frequency module as data transmission and uses a warning system that is used for detection. Respiration rate was measured using the piezoelectric sensor, and body temperature was measured using the DS18B20 temperature sensor. Processing of sensor data is done with ESP32, which is displayed wirelessly by the HC-12 module on the PC. If an indication of a heart attack is detected in the parameter value, the tool will activate a notification on the PC. In every indication of a heart attack, it was found that this design can provide notification properly. The results showed that the largest respiratory error value was 4%, and the largest body temperature error value was 0.55%. The results of this study can be implemented in patients who have been diagnosed with heart attack disease so that it can facilitate monitoring the patient's condition.


Author(s):  
Kaushal Shah ◽  
Shivang Rajbhoi ◽  
Nikhil Prasad ◽  
Charmi Patel ◽  
Roushan Raj

This paper presents an approach for detecting real-time parking slots which includes vision-based techniques. Traditional sensor-based systems are not cost effective as 'n' number of sensors are required for 'n' parking slots. Transmitting sensor data to central system is done by hardwiring or installing dedicated wireless system which is again costly. Our technique will overcome this problem by using camera instead of number of sensors which is expensive. For detection we are using a Convolutional Neural Networks (CNN) classifier which is custom trained. It is more robust and effective in changing light conditions and weather. The following system do not require high processing as detections are done on static images not on video stream. We have also demonstrated real-time parking scenario by constructing a small prototype which shows practical implementation of our system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julius Žilinskas ◽  
Algirdas Lančinskas ◽  
Mario R. Guarracino

AbstractDuring the COVID-19 pandemic it is essential to test as many people as possible, in order to detect early outbreaks of the infection. Present testing solutions are based on the extraction of RNA from patients using oropharyngeal and nasopharyngeal swabs, and then testing with real-time PCR for the presence of specific RNA filaments identifying the virus. This approach is limited by the availability of reactants, trained technicians and laboratories. One of the ways to speed up the testing procedures is a group testing, where the swabs of multiple patients are grouped together and tested. In this paper we propose to use the group testing technique in conjunction with an advanced replication scheme in which each patient is allocated in two or more groups to reduce the total numbers of tests and to allow testing of even larger numbers of people. Under mild assumptions, a 13 ×  average reduction of tests can be achieved compared to individual testing without delay in time.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


Author(s):  
Negin Yousefpour ◽  
Steve Downie ◽  
Steve Walker ◽  
Nathan Perkins ◽  
Hristo Dikanski

Bridge scour is a challenge throughout the U.S.A. and other countries. Despite the scale of the issue, there is still a substantial lack of robust methods for scour prediction to support reliable, risk-based management and decision making. Throughout the past decade, the use of real-time scour monitoring systems has gained increasing interest among state departments of transportation across the U.S.A. This paper introduces three distinct methodologies for scour prediction using advanced artificial intelligence (AI)/machine learning (ML) techniques based on real-time scour monitoring data. Scour monitoring data included the riverbed and river stage elevation time series at bridge piers gathered from various sources. Deep learning algorithms showed promising in prediction of bed elevation and water level variations as early as a week in advance. Ensemble neural networks proved successful in the predicting the maximum upcoming scour depth, using the observed sensor data at the onset of a scour episode, and based on bridge pier, flow and riverbed characteristics. In addition, two of the common empirical scour models were calibrated based on the observed sensor data using the Bayesian inference method, showing significant improvement in prediction accuracy. Overall, this paper introduces a novel approach for scour risk management by integrating emerging AI/ML algorithms with real-time monitoring systems for early scour forecast.


2021 ◽  
pp. 147592172199621
Author(s):  
Enrico Tubaldi ◽  
Ekin Ozer ◽  
John Douglas ◽  
Pierre Gehl

This study proposes a probabilistic framework for near real-time seismic damage assessment that exploits heterogeneous sources of information about the seismic input and the structural response to the earthquake. A Bayesian network is built to describe the relationship between the various random variables that play a role in the seismic damage assessment, ranging from those describing the seismic source (magnitude and location) to those describing the structural performance (drifts and accelerations) as well as relevant damage and loss measures. The a priori estimate of the damage, based on information about the seismic source, is updated by performing Bayesian inference using the information from multiple data sources such as free-field seismic stations, global positioning system receivers and structure-mounted accelerometers. A bridge model is considered to illustrate the application of the framework, and the uncertainty reduction stemming from sensor data is demonstrated by comparing prior and posterior statistical distributions. Two measures are used to quantify the added value of information from the observations, based on the concepts of pre-posterior variance and relative entropy reduction. The results shed light on the effectiveness of the various sources of information for the evaluation of the response, damage and losses of the considered bridge and on the benefit of data fusion from all considered sources.


Sign in / Sign up

Export Citation Format

Share Document