scholarly journals Crimped and Hooked End Steel Fibre Impacts on Self compacting Concrete

Self-compacting concrete is gaining importance in recent years due to its highest versatility in replacing compacting equipment and there by reducing the constructional flaws. The only limitation of SCC of compromising with strength has been challenged by the addition of steel fibers in this paper. In this research work two types of steel fibers such as crimped type and hook end type are utilized in various proportions such as 0.4%,0.8%, 1.0% and 1.25%. SCC mandatory tests such as Flowing ability, filling ability and passing ability were determined and then the mechanical properties such as compressive strength and split tensile strength have been determined. Results show the unique variation with reference to the different type of fiber and different volume of fiber. This unleashes a lot of scope in the field of Fiber reinforced Self compacting concrete

Self-compacting concrete is one that is flow able by its own. The SCC is suitable for placing in dense reinforcement structures. It is a new generation performance concrete known for its outstanding deformity and high resistance to bleeding. The concrete is frail material which is comparatively tough in compression but fragile in tension. The tensile strength of concrete is improved by addition of fibers in the concrete mix. The addition of such fibers has negative consequence on the workability of concrete. Various types of fibers are used in concrete to provide the higher flexural strength and better tensile strength. In this research steel fibers are used to provide a better strength as compared with normal reinforced concrete. Steel fiber in SCC significantly improves its flexural strength, improved tensile properties, reduce cracking and improve durability. In this research the investigation of steel fiber in SCC to enhance the strength properties of SCC. The objective of the study was to determine different properties of SCC with steel fiber at different proportions. The experimental investigation was took on the freshly mixed and hardened properties of SCC of various mix with the different variations of fiber 0.25%, 0.50%, 0.75% and 1% by using Viscosity Modified Agent (VMA) 1.5% of cement material by using M25 grade of concrete. In this research a series of tests were carried out for workability like slump cone test, U funnel, V funnel, L box test on SCC to check freshly mix properties like flow-ability, filling-ability, and passing-ability and hardened properties like compressive strength, split-tensile strength and flexural strength respectively and test were conducted at the age of 7Days, 14Days, 28Days on the SCC. The advantage of adding steel fiber in self-compacting concrete is that it enhances its overall strength.


Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 36 ◽  
Author(s):  
Hisham Alabduljabbar ◽  
Rayed Alyousef ◽  
Fahed Alrshoudi ◽  
Abdulaziz Alaskar ◽  
Ahmed Fathi ◽  
...  

The behaviors of the fresh and mechanical properties of self-compacting concrete (SCC) are different from those of normal concrete mix. Previous research has investigated the benefits of this concrete mix by incorporating different constituent materials. The current research aims to develop a steel fiber reinforcement (SFR)‒SCC mixture and to study the effectiveness of different cement replacement materials (CRMs) on the fresh and mechanical properties of the SFR‒SCC mixtures. CRMs have been used to replace cement content, and the use of different water/cement ratios may lower the cost of CRMs, which include microwave-incinerated rice husk ash, silica fume, and fly ash. Fresh behavior, such as flow and filling ability and capacity segregation, was examined by a special test in SCC on the basis of their specifications. Moreover, compressive and splitting tensile strength tests were determined to simulate the hardened behavior for the concrete specimens. Experimental findings showed that, the V-funnel and L-box were within the accepted range for SCC. Tensile and flexural strength increases upon the use of 10% silica fume were found when compared with other groups; the ideal percentage of steel fiber that should be combined in this hybrid was 2% of the total weight of the binder. Overall, steel fibers generated a heightened compressive and splitting tensile strength in the self-compacting concrete mixes.


2021 ◽  
Vol 11 (13) ◽  
pp. 6028
Author(s):  
P. Jagadesh ◽  
Andrés Juan-Valdés ◽  
M. Ignacio Guerra-Romero ◽  
Julia M. Morán-del Morán-del Pozo ◽  
Julia García-González ◽  
...  

One of the prime objectives of this review is to understand the role of design parameters on the mechanical properties (Compressive and split tensile strength) of Self-Compacting Concrete (SCC) with recycled aggregates (Recycled Coarse Aggregates (RCA) and Recycled Fine Aggregates (RFA)). The design parameters considered for review are Water to Cement (W/C) ratio, Water to Binder (W/B) ratio, Total Aggregates to Cement (TA/C) ratio, Fine Aggregate to Coarse Aggregate (FA/CA) ratio, Water to Solid (W/S) ratio in percentage, superplasticizer (SP) content (kg/cu.m), replacement percentage of RCA, and replacement percentage of RFA. It is observed that with respect to different grades of SCC, designed parameters affect the mechanical properties of SCC with recycled aggregates.


2021 ◽  
Vol 28 (1) ◽  
pp. 64-72
Author(s):  
Jawad Ahmad ◽  
Fahid Aslam ◽  
Osama Zaid ◽  
Rayed Alyousef ◽  
Hisham Alabduljabbar ◽  
...  

Abstract Self-Consolidating Concrete (SCC) has also brittle characteristics. This is unacceptable for any construction industry. The addition of fibers is one of the most common methods to enhance the tensile strength of concrete. Fiber controls the cracking phenomena and enhances the energy absorption capability of the concrete. On the other hand, the addition of fibers has a negative impact on the workability of fresh concrete. In this paper, a detailed study on the influence of Propylene fibers (PP) on the fresh properties of SCC was carried out. PFs were added into concrete mixes in a proportion of 1.0%, 2.0%, 3.0%, and 4.0% by weight of cement to offset its undesirable brittle nature and enhance its tensile strength. The fresh characteristics were evaluated based on its passing ability, flowability using, Slump flow, Slump T50 Spread time, L-Box and V-funnel tests as well as mechanical performance (compressive and split tensile strength) were also evaluated at 7,14 and 28 days curing. Test results indicate that the passing and filling ability decreased as the substitution ratio of PP increased. Besides, the test result indicates that strength was increased up to 2.0% addition of PP and then decrease gradually.


Author(s):  
Fangyuan Li ◽  
Yunxuan Cui ◽  
Chengyuan Cao ◽  
Peifeng Wu

Directionally distributed steel fibre-reinforced concrete has been proposed as a novel concrete because of its high tensile strength and crack resistance in specific directions. Based on the existing studies of the effect of the fibre direction on the mechanical properties of fibre-reinforced concrete, the authors in this paper performed further studies of the mechanical properties of directionally distributed steel fibre-reinforced concrete by conducting split tensile and bending tests. The split tensile strength of the directionally distributed fibre-reinforced concrete clearly exhibited anisotropy. The split tensile strength perpendicular to the fibre direction was much higher than that parallel to the fibre direction. The split tensile strength perpendicular to the fibre direction was almost twice the tensile strength of plain concrete. The flexural performance of directionally distributed fibre-reinforced concrete in the fibre direction significantly improved compared to that of randomly distributed fibre-reinforced concrete. Specifically, the flexural strength increased by as much as 97%. Gravity resulted in a deviation in the tensile properties of concrete prepared by manually and directionally placing fibres in a layered casting process. The test results can be utilised in subsequent concrete designs. The conclusions reached in this paper provide comprehensive mechanical design parameters for the application of directionally distributed fibre-reinforced concrete.


2021 ◽  
Vol 13 (2) ◽  
pp. 824
Author(s):  
Jawad Ahmad ◽  
Rana Faisal Tufail ◽  
Fahid Aslam ◽  
Amir Mosavi ◽  
Rayed Alyousef ◽  
...  

Self-compacting concrete (SCC) is a special type of concrete that is highly flowable, nonsegregating and spread into place by its own weight, completely filling the formwork even in the presence of dense reinforcement and then encapsulating the rebar without the need for any additional compaction. This research was carried out to evaluate the effects of bentonite clay and wheat straw ash as a partial substitution for cement in SSC. Bentonite clay and wheat straw ash were added in proportion of 0%, 5.0%, 10%, 15%, and 20% of the weight of the cement. Fresh characteristics were evaluated based on its passing ability and flowability using slump flow, slump T50, L-box, and V-funnel tests. After 7 days, 14 days, and 28 days of curing, cylinders of standard size were cast and tested for compressive and split tensile strength. The test results indicate that bentonite clay and wheat straw ash decrease the passing ability and filling ability of SCC. Furthermore, the concrete specimens’ tests indicate that wheat straw ash and bentonite clay additions of up to 10% and 15% of the weight of the cement tend to improve the compressive and split tensile strength of hardened SCC. Response surface methodology (statistical models) is used to optimize the combined dosage of wheat straw ash and bentonite clay and is verified through experimental tests. It can also be suggested that bentonite and wheat straw ash are successfully neutralized in concrete instead of cement.


2012 ◽  
Vol 174-177 ◽  
pp. 1388-1393
Author(s):  
Hai Qing Song ◽  
Teng Long Zheng

Plain concrete is susceptible to cracking under aggressive environment such as in freezing shaft. And addition of steel fibres in plain high strength concrete is proved to be effective in cracking resistance and brittleness improvement, etc. This paper presents results of experimental investigation carried out to study the mechanical properties of steel fibre-reinforced concrete having volume fractions of 0.38%, 0.51% and 0.64% for two types of fibres respectively. The results of this study revealed that there is an increase for all the mechanical properties such as compressive strength, split tensile strength, modulus of elasticity and flexural strength. Enhancement for split tensile strength and flexural strength is more evident than compressive strength.


2020 ◽  
Vol 26 (5) ◽  
pp. 172-190
Author(s):  
Shubbar Jawad Al-obaidey

The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the results showed that mixes with a larger maximum aggregate size of 19 mm exhibited better fresh properties, while mechanical properties negatively affected by using a larger maximum aggregate size. The results also showed that using steel fibers led to negative effects on fresh properties, especially with higher steel fibers content and larger maximum aggregate size. The marginal effect of steel fibers on compressive strength was noticed, while for both splitting and flexural tensile strength, significant increase was obtained with increasing of steel fibers content. The properties of SFLWSCC in the fresh state had a considerable effect on mechanical properties, whereas with the best fresh properties, the best mechanical properties can be obtained.


Sign in / Sign up

Export Citation Format

Share Document