scholarly journals Determining the Yield of the Crop using Artificial Neural Network Method

The agricultural system is complex and comprehend since it deals with large data that comes from several factors. Lot of techniques and have been used to identify any interactions between factors affecting yields with crop performance. The major objective of this paper is to help us predict the yield of a particular crop before even cultivating it for its production. We are using artificial neural networks for forwarding and implementing a system that will help the farmers in finding their crop yields according to their given data as input in the system and the system will give output based on previous data. The method used in this crop yield system is an artificial neural network and the algorithm used is feed forward and back propagation. Provide the input of data sets and the desired outcome of the system. Compute the error between the actual and desired outcome of the system. Amendment of the weight associated with different inputs and different functions. Compare the errors and the tolerance ratio of the output. Various machine learning techniques have been used in the past for calculating the crop yield using remote data. However, these methods are less useful and effective for predicting the yield of maize and for some other crops, which is cultivated at different times in various fields.The major application of this crop yield system is that it will help us to predict the yield before even cultivating it by studying the previous data collected such as soil fertility, pH level.

Text-based CAPTCHA is a very simple type of CAPTCHA which are most widely used. It uses only a group of characters. In this paper, we focus on how Text based CAPTCHA is recognized by machine learning techniques. This paper proposed a method based on Back Propagation algorithm to identify the Text based CAPTCHA. The proposed technique improves the security level of Text-based CAPTCHA storage system by using the Back-propagation method of Artificial Neural Network. We used NNToolbox to train the network in MATLAB software


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3373
Author(s):  
Ludek Cicmanec

The main objective of this paper is to describe a building process of a model predicting the soil strength at unpaved airport surfaces (unpaved runways, safety areas in runway proximity, runway strips, and runway end safety areas). The reason for building this model is to partially substitute frequent and meticulous inspections of an airport movement area comprising the bearing strength evaluation and provide an efficient tool to organize surface maintenance. Since the process of building such a model is complex for a physical model, it is anticipated that it might be addressed by a statistical model instead. Therefore, fuzzy logic (FL) and artificial neural network (ANN) capabilities are investigated and compared with linear regression function (LRF). Large data sets comprising the bearing strength and meteorological characteristics are applied to train the likely model variations to be subsequently compared with the application of standard statistical quantitative parameters. All the models prove that the inclusion of antecedent soil strength as an additional model input has an immense impact on the increase in model accuracy. Although the M7 model out of the ANN group displays the best performance, the M3 model is considered for practical implications being less complicated and having fewer inputs. In general, both the ANN and FL models outperform the LRF models well in all the categories. The FL models perform almost equally as well as the ANN but with slightly decreased accuracy.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 766
Author(s):  
Rashad A. R. Bantan ◽  
Ramadan A. Zeineldin ◽  
Farrukh Jamal ◽  
Christophe Chesneau

Deanship of scientific research established by the King Abdulaziz University provides some research programs for its staff and researchers and encourages them to submit proposals in this regard. Distinct research study (DRS) is one of these programs. It is available all the year and the King Abdulaziz University (KAU) staff can submit more than one proposal at the same time up to three proposals. The rules of the DSR program are simple and easy so it contributes in increasing the international rank of KAU. The authors are offered financial and moral reward after publishing articles from these proposals in Thomson-ISI journals. In this paper, multiplayer perceptron (MLP) artificial neural network (ANN) is employed to determine the factors that have more effect on the number of ISI published articles. The proposed study used real data of the finished projects from 2011 to April 2019.


2010 ◽  
Vol 39 ◽  
pp. 555-561 ◽  
Author(s):  
Qing Hua Luan ◽  
Yao Cheng ◽  
Zha Xin Ima

The establishing of a precise simulation model for runoff prediction in river with several tributaries is the difficulty of flood forecast, which is also one of the difficulties in hydrologic research. Due to the theory of Artificial Neural Network, using Back Propagation algorithm, the flood forecast model for ShiLiAn hydrologic station in Minjiang River is constructed and validated in this study. Through test, the result shows that the forecast accuracy is satisfied for all check standards of flood forecast and then proves the feasibility of using nonlinear method for flood forecast. This study provides a new method and reference for flood control and water resources management in the local region.


2017 ◽  
Vol 14 (9) ◽  
pp. 095601 ◽  
Author(s):  
Huimin Sun ◽  
Yaoyong Meng ◽  
Pingli Zhang ◽  
Yajing Li ◽  
Nan Li ◽  
...  

Author(s):  
Nisha Thakur ◽  
Sanjeev Karmakar ◽  
Sunita Soni

The present review reports the work done by the various authors towards rainfall forecasting using the different techniques within Artificial Neural Network concepts. Back-Propagation, Auto-Regressive Moving Average (ARIMA), ANN , K- Nearest Neighbourhood (K-NN), Hybrid model (Wavelet-ANN), Hybrid Wavelet-NARX model, Rainfall-runoff models, (Two-stage optimization technique), Adaptive Basis Function Neural Network (ABFNN), Multilayer perceptron, etc., algorithms/technologies were reviewed. A tabular representation was used to compare the above-mentioned technologies for rainfall predictions. In most of the articles, training and testing, accuracy was found more than 95%. The rainfall prediction done using the ANN techniques was found much superior to the other techniques like Numerical Weather Prediction (NWP) and Statistical Method because of the non-linear and complex physical conditions affecting the occurrence of rainfall.


Sign in / Sign up

Export Citation Format

Share Document