scholarly journals Temporal Rainfall Variabilityand Its Correlation with Temperature over Ranchi, Jharkhand

The extent to which rainfall amount varies across an area (spatial) or through time (temporal) is an important characteristic to determine the climate of an area. The discipline that covers this area in Meteorology/Climatology is known as “Rainfall variability”. It is of two types: Areal (Spatial) and Temporal. The temporal variability of rainfall means variation of rainfall as time varies but the area of the location remains the same. The temporal variability of rainfall of a place helps in knowing the rainfall variability with time. Rainfall variability plays an important role in understanding climate change. In this fast growing world, urbanization and industrialization has led to the problem of global warming. As a result of this, there has been a drift rise in temperature. The present research work was taken over to analyze the temporal trend of Rainfall over Ranchi during 1975-2017 and to study its correlation with temperature over Ranchi, Jharkhand during 1975-2009. To analyze the trend in rainfall over Ranchi, rainfall data from 1975-2017 was studied. The annual rainfall ranged from a minimum of 734.6 mm to a highest of 1771.335 mm. The mean, median, coefficient of variance and standard deviation was also found on the monthly, seasonal and annual basis. Through time series graphs of rainfall, a positive trend is detected in summer season while annual, winter and southwest monsoon rainfall appeared as a negative trend. On the other hand, by utilizing non-parametric tests such as Mann-Kendall trend test and Sen Slope, it was found that there was no significant trend at 95% confidence limit in any case. Through the study, it was found that there is a significant correlation of rainfall with temperature over the years 1975-2009. Although it was found to be negative in Summer, Monsoon and Annual data, whereas there was a positive correlation between rainfall and temperature during the winter season.

2020 ◽  
Author(s):  
Getachew Bayable Tiruneh ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background: Rainfall variability is a common characteristic in Ethiopia and it exceedingly affects agriculture particularly in the eastern parts of the country where rainfall is relatively scarce. Hence, understanding the spatio-temporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatio-temporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia.Method: The coefficient of variation (CV) and standardized anomaly index (SAI) was employed to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by the Pearson correlation coefficient (r).Results: The annual rainfall CV ranges from 12-19.36% while the seasonal rainfall CV extends from 15-28.49%, 24-35.58%, and 38-75.9% for average Kiremt (June-September), Belg (February-May), and Bega (October-January) seasons, respectively (1983-2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends of rainfall were not statistically significant (α = 0.05), unlike November. The annual rainfall trends showed a non-significant decreasing trend. On a seasonal basis, the trend of mean Kiremt and Belg seasons rainfall was decreased. But, it increased in Bega season although it was not statistically significant. Moreover, the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, the correlation between rainfall and Pacific Ocean SST was negative at annual time scales.Conclusions: High spatial and temporal rainfall variability on monthly, seasonal, and annual time scales was observed in the study area. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall was increased annually and in the Bega season rather than other seasons. Generally, the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.


Author(s):  
Amar Bahadur Pal ◽  
Deepak Khare ◽  
Prabhash Kumar Mishra ◽  
Lakhwinder Singh

Purpose: The study has been carried out to investigate and assess the significance of the potential trend of three variables viz. rainfall, temperature and runoff over the Rangoon watershed in Dadeldhura district of Nepal.Methodology: In this study, trend analysis has been carried out on monthly, seasonal and annual basis using the data period between 1979 to 2010 for rainfall and temperature and 1967 to 1996 for runoff. Mann-Kendall test and Sen’s slope estimate test were applied to identify the existing trend direction and Sen’s slope estimator test were used to detect the trend direction and magnitude of change over time.Main findings: The most important findings are, i) There is warming trends over the Rangoon watershed as Mann-Kendall statistic (Z-value) for most of the maximum temperature values are positive, ii) Rainfall and runoff affected by fluctuations every year though the annual rainfall showing a rising trend whereas runoff showing a falling trend. The rainfall seasonal trend analysis indicates that monsoon and post-monsoon period showed a positive rainfall trend with z statistics of +1.93, and +1.12 respectively, whereas pre-monsoon and winter seasons showed a negative trend with z statistics of -1.02, and -0.54 respectively. However, the annual rainfall in the Rangoon watershed showed a positive trend with a z value of +1.70.Importance of this study: This case study has been undertaken to investigate the trends of important climatic variables viz. rainfall, temperature which have a direct impact on the agriculture of the region.Originality / Novelty of study: This is an original research work undertaken under the M. Tech programme during 2016-17 at IIT Roorkee by the scholar Er. Amar Bahadur Pal from Nepal. 


Author(s):  
Dr. Vasudev S. Salunke ◽  
Pramila. P. Zaware

Rainfall is one of the vital form of precipitation which affects not only agricultural activity but also entire ecology in any region. Hence rainfall distribution and its trends in district is important to understand water availability and to take decisions for the agricultural activities in area. This research paper is an effort to assess the spatial and temporal rainfall variability of Ahmednagar district of Maharashtra State. Ahmednagar is popularly known as the largest district of Maharashtra with fourteen Talukas. The average annual rainfall of this district is 621 mm with an average of 46 rainy days. In this study the spatial and temporal rainfall distribution of this district is taken in to account. Short-term annual rainfall data are considered from 1998 to 2014. The daily rainfalls of monsoon months of all the fourteen Taluka are analyzed for the year 2015.It was found that spatial and temporal variability is high in the District.


Author(s):  
K Kandiannan, K S Krishnamurthy, C K Thankamani, S J Ankegowda

Rainfall analysis of important plantation and spices producing districts such as The Nilgiris (Tamil Nadu), Kodagu (Karnataka) Idukki (Kerala) and Wayanad (Kerala) with 100 years data (1901 to 2000) obtained from the India Meteorological Department (IMD), Pune indicated that mean annual rainfall were 1839.7mm, 2715.7mm, 2979.4mm and 3381.0mm with a coefficient of variation (CV) of 16.0%, 17.0%, 25.8% and 19.6%, respectively. The contribution of southwest monsoon(June-September) to the annual rainfall in these districts were 80.3% (Wayanad), 78.9% (Kodagu),  65.2% (Idukki) and 56.3%  (The Nilgiris) with corresponding CV of 24.1%, 20.6%, 32.5%, and 24.6%, respectively. The declining trend in mean annual rainfall was noticed for Idukki, Wayanad and The Nilgiris, whereas, for Kodagu, it was stable. The change was significant in Wayanad and The Nilgiris. Similar trend was also observed for the southwest monsoon rainfall. The maximum decline in annual and southwest monsoon rainfall was noticed in The Nilgiris followed by Wayanad. Pre and post monsoon rainfall receipts were comparatively less with high inter-annual variations. The pre-monsoon (March-May) receipt and its coefficient of variation (CV) was 252.4mm & 20.6% (Kodagu), 360.9mm & 36.5% (Idukki), 251.7mm & 36.6% (The Nilgiris) and 274.2mm & 54.2% (Wayanad). The post monsoon (October-December) rain was maximum in Idukki 548.1mm (CV 27.9%) followed by The Nilgiris 503.4mm(CV 31.3%), Wayanad, 333.1mm(CV 37.8%) and Kodagu 310.5mm (CV 32.7%). In all these districts there was a declining trend in the pre-monsoon rain with maximum decline in The Nilgiris. Similar declining trend was also observed in post-monsoon rain except for The Nilgiris, where the trend has been increasing. Overall, the study gives an indication that there was a spatial and temporal variation in rainfall amounts.  The maximum decline in annual rainfall and the southwest monsoon was observed in The Nilgiris and Wayanad. July was the rainiest month in all the districts studied. Significant negative trend was asscoaited with The Nilgiris for January, May, June, July and August months. Whereas, in Kodagu, no significant trend was observed for mean monthly rainfall, except for August. In Idukki, significant negative changes were noticed for January, March, October and December rainfall. Monthly rainfall of January, March, April and July monthly rainfall were showed significant negative trend in Wayanad,. These negative trends across important plantation and spices producing districts of the Western Ghats would affect not only the agricultural economy of this sector but also water resources.


2020 ◽  
Author(s):  
Harshita Singh ◽  
Suryapal Singh ◽  
V. P.S. Panghal

Coriander is second most important seed spice crop grown for its seed as well as leaves. Among the major yield determining factors, NPK fertilization along with correct supply of water play an important role in the quality and yield aspects of coriander. Since coriander is grown mainly in arid and semi-arid areas, water is one of the main constraints in crop production as these growing areas are deficit in annual rainfall. Coriander grown particularly during winter season requires assured irrigation for successful production. Also, dumping of huge quantity of fertilizers in the soil becomes uneconomical besides polluting the environment. Therefore, application of optimum dose of fertilizers not only increases the yield but also improves the quality of the crop as well as soil. Extensive research work has been reported on irrigation and fertilizer requirement of coriander. Therefore, an attempt is been made to review the information available regarding the irrigation and fertilization studies and their impact on growth, yield and other attributing parameters of coriander.


2021 ◽  
Vol 5 (2) ◽  
pp. 56-71
Author(s):  
Anu David Raj ◽  
K. R. Sooryamol ◽  
Aju David Raj

Kerala is the gateway of the Indian southwest monsoon. The Tropical Rainfall Measurement Mission (TRMM) rainfall data is an efficient approach to rainfall measurement. This study explores the temporal variability in rainfall and trends over Kerala from 1998-2019 using TRMM data and observatory data procured from India Meteorological Department (IMD). Direct comparison with observatory data at various time scales proved the reliability of the TRMM data (monthly, seasonal and annual). The temporal rainfall converted by averaging the data on an annual, monthly and seasonal time scale, and the results have confirmed that the rainfall estimated based on satellite data is dependable. The station wise comparison of rainfall in monsoon season provides satisfactory results. However, estimation of rainfall in mountainous areas is challenging task using the TRMM. In the basins of humid tropical regions, TRMM data can be a valuable source of rainfall data for water resource management and monitoring with some vigilance. In Kerala, the study found an insignificant increase in the southwest monsoon and winter season rainfall during last two decades. The rainfall over Kerala showed uncertainty in the distribution of monthly, seasonal and yearly time scales. This study provides a preview of recent weather patterns that would enable us to make better decisions and improve public policy against climate change.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 31
Author(s):  
Champika S. Kariyawasam ◽  
Lalit Kumar ◽  
Benjamin Kipkemboi Kogo ◽  
Sujith S. Ratnayake

Climate variability can influence the dynamics of aquatic invasive alien plants (AIAPs) that exert tremendous pressure on aquatic systems, leading to loss of biodiversity, agricultural wealth, and ecosystem services. However, the magnitude of these impacts remains poorly known. The current study aims to analyse the long-term changes in the spatio-temporal distribution of AIAPs under the influence of climate variability in a heavily infested tank cascade system (TCS) in Sri Lanka. The changes in coverage of various features in the TCS were analysed using the supervised maximum likelihood classification of ten Landsat images over a 27-year period, from 1992 to 2019 using ENVI remote sensing software. The non-parametric Mann–Kendall trend test and Sen’s slope estimate were used to analyse the trend of annual rainfall and temperature. We observed a positive trend of temperature that was statistically significant (p value < 0.05) and a positive trend of rainfall that was not statistically significant (p values > 0.05) over the time period. Our results showed fluctuations in the distribution of AIAPs in the short term; however, the coverage of AIAPs showed an increasing trend in the study area over the longer term. Thus, this study suggests that the AIAPs are likely to increase under climate variability in the study area.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 205-222 ◽  
Author(s):  
NEERAJ KUMAR ◽  
C. C. PANCHAL ◽  
S. K. CHANDRAWANSHI ◽  
J. D. THANKI

On the basis of past 115 years (1901-2015) rainfall data of five districts of south Gujarat, the Mann-Kendall trend, Sen’s slope and regression slope showed that annual and monsoon rainfall at Valsad, Dang and Surat shows the increasing trend while, that of Navsari and Bharuch districts are declining. The monsoon season (summer monsoon) rainfall variability of Valsad, Dang, Surat, Navsari and Bharuch districts was recorded is 30.1%, 30.9%, 35.9%. 33.3% and 38.6%. The high coefficient of variation (CV) denoted that the variability of rainfall is not equally distributed and the amount of rainfall is lowest. The Bharuch district the annual and monsoon CV per cent denoted that the variability of rainfall in both seasons are very high. Valsad was recorded lowest CV with highest rainfall while the data are represent that variability of rainfall which can varies Bharuch to Dang in different districts of south Gujarat. The data shows that Dang district comes under high rainfall and Bharuch under low rainfall on south Gujarat. A low standard deviation indicates that the data points tend to be close to the mean of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values. Similarly high SD is reported at Dang district because of high range of rainfall and lowest SD is found at Bharuch district because of low rainfall variability. The rainfall distribution different season viz., pre monsoon, monsoon post monsoon and winter season, the highest present contribution of rainfall is observed during monsoon season followed by post monsoon in all the five districts of south Gujarat. Rainfall contribution during remaining months was less than one per cent. While month wise analysis shows during monsoon season highest rainfall per cent contribution to annual rainfall is in July followed by August and June months at all the five districts of south Gujarat.


Author(s):  
Alan Cezar Bezerra ◽  
Sidney Anderson Teixeira da Costa ◽  
Jhon Lennon Bezerra da Silva ◽  
Athos Murilo Queiroz Araújo ◽  
Geber Barbosa de Albuquerque Moura ◽  
...  

Abstract This study aimed to identify the homogeneous zones, the regimes, and the local trends for annual and seasonal rainfall in the state of Pernambuco, Brazil. We collected seasonal and annual data on monthly rainfall from 45 weather stations in Pernambuco from 1987 to 2019. The data were organized yearly to identify the homogeneous rainfall zones based on Euclidean distance and Ward's coefficient. The mean annual value of each zone was calculated and the data were subjected to descriptive statistics analysis, analysis of rainfall regime with the Rain Anomaly Index, and time trend analysis using the Mann-Kendall method. The results show three homogeneous rainfall zones: 1 (semiarid), 2 (transition), and 3 (coastal), with mean values for annual rainfall of 562, 1032, and 1812 mm year-1, respectively. The precipitation regime showed the predominance of dry years as zones 1, 2, and 3 exhibited dry periods of 18, 17, and 15 years, respectively. Time trend analysis revealed a decrease in annual rainfall of 48.7 mm for Zone 1, 13.2 mm for Zone 2, and 204.4 mm for Zone 3, without statistical significance. Seasonal analysis demonstrated that Zone 1 presented a negative trend in the spring and a positive trend in Zone 2 in the summer, indicating changes in the rain seasonality.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 357-366
Author(s):  
PIJUSH BASAK

The principal component analysis (PCA) is applied to understand the spatial and temporal variability of monsoonal rainfall in the state Assam in India. The Southwest Monsoon (SWM) rainfall data over 12 widely spread stations located over the state has been analyzed for a period of 60 years for understanding variability. A statistically significant trend and a above/below transition signal has been observed for a few stations and the corresponding principal components (PCs). Coherent regions of Northern and Southern Assam have been identified through PCA to bring out the possible significant signals. It is observed that some of PCs for state-wise and coherent regions have positive or negative trend and significant above/below transition.    


Sign in / Sign up

Export Citation Format

Share Document