scholarly journals Effect of Temperature at Tray Position on Drying of D.ark Re.d Oni.on-slice.s at Elevated Air Velocity

The convective drying process is used to dry onion-slices. The drying experiments are conducted at a drying temperature of 50oC, 60oC, 70oC, and at an air velocity of 1.99, 3.54, 5.66, and 7.52 m/s. The objective is to study the influence of tray position on drying of dark red onion. The work diverges in analyzing drying constants at air velocity beyond 2 m/s. The moisture ratio for the middle tray is greater compared to the top and bottom tray. A smaller moisture ratio is observed for 60°C compared to 50 and 70°C. Moisture removal per unit mass flow rate ratio is lowest observed for bottom tray with 60°C. The ratio of moisture content and mass flow rate for 60 and 70 °C, displays a downward trend with drying time. The randomness in the drying rate at 60 °C and 70 °C is comparatively lesser than 50 °C.

2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 451-462 ◽  
Author(s):  
Walid Aissa ◽  
Mostafa El-Sallak ◽  
Ahmed Elhakem

Solar dryer chamber is designed and operated for five days of July 2008. Drying experiments are conducted for sponge-cotton; as a reference drying material in the ranges between 35.0 to 49.5?C of ambient air temperature, 35.2 to 69.8 ?C drying air temperature, 30 to 1258 W/m2 solar radiation and 0.016 to 0.08 kg/s drying air flow rate. For each experiment, the mass flow rate of the air remained constant throughout the day. The variation of moisture ratio, drying rate, overall dryer efficiency, and temperature distribution along the dryer chamber for various drying air temperatures and air flow rates are discussed. The results indicated that drying air temperature is the main factor in controlling the drying process and that air mass flow rate has remarkable influence on overall drying performance. For the period of operation, the dryer attained an average temperature of 53.68?C with a standard deviation of 8.49?C within a 12-h period from 7:00 h to 19:00 h. The results of this study indicated that the present drying system has overall efficiency between 1.85 and 18.6 % during drying experiments. Empirical correlations of temperature lapse and moisture ratio in the dryer chamber are found to satisfactorily describe the drying curves of sponge-cotton material which may form the basis for the development of solar dryer design charts.


Author(s):  
Jing-Yu Ran ◽  
Li-Xiang Niu ◽  
Qiang Tang ◽  
Li Zhang

Methane and vapor catalytic-reaction is a complex reaction system, and especially CH4/CO2 reaction has an important influence to the methane/vapor reforming reaction. In this paper, the reaction character for methane and vapor catalytic reforming reaction in the micro-chamber wall with Ni catalyst is numerically investigated. The results show that the CH4/CO2 reaction has a vital influence on reactive characteristics in the different H2O/CH4 mole ratio and the mass flow-rate. With increasing the H2O/CH4 mole ratio, the concentration of H2 and CO2 increases, the concentration of CO increases and then decreases, but if the H2O/CH4 mole ratio is more than 2.5, the result is different. The reaction efficiency will descend while the flow-rate increases. The results also display that the methane conversion ratio, the vapor conversion ratio, and the hydrogen concentrations can be up to 81.73%, 69.42%, and 4.29%, while the H2O/CH4 mole ratio, flow-rate and methane/vapor mass flow-rate ratio are 2.5, 7 g/h and 0.1 respectively.


2018 ◽  
Vol 34 (3) ◽  
pp. 535-541
Author(s):  
Robert G. Hardin IV

Abstract. Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, which primarily results from acceleration of the seed cotton. The initial sensor did not perform satisfactorily in a gin, and modifications were made to account for air leakage through the rotary valve at the blowbox and the temperature drop occurring due to heat exchange between the seed cotton and air. Mass flow rate was predicted based on the static pressure differences across the blowbox and rotary valve, the air velocity and density at the blowbox inlet, the air density in the blowbox, and the ambient air density. The first- and second-stage seed cotton cleaning and drying systems of the commercial-scale gin at the Cotton Ginning Research Unit were instrumented to test the improved model. Air velocity, cultivar, dryer temperature, and seed cotton feed rate were varied to determine their effects on model accuracy. Mean absolute percentage errors in predicting mass flow rate were 3.89% and 2.85% for the first- and second-stage systems, respectively; however, dryer temperature had a significant effect on the regression coefficients. An additional regression parameter was added to the model to better estimate the average blowbox density, reducing the mean absolute percentage error to 2.5% for both systems and eliminating the effect of dryer temperature on the regression coefficients. Keywords: Cotton, Ginning, Mass flow, Pneumatic conveying, Pressure.


Author(s):  
Ryo Kubo ◽  
Fumio Otomo ◽  
Yoshitaka Fukuyama ◽  
Yuhji Nakata

A CFD investigation was conducted on the total pressure loss variation for a linear nozzle guide vane cascade of a gas turbine, due to the individual film injections from the leading edge shower head, the suction surface, the pressure surface and the trailing edge slot. The results were compared with those of low speed wind tunnel experiments. A 2-D Navier-Stokes procedure for a 2-D slot injection, which approximated a row of discrete film holes, was performed to clarify the applicable limitation in the pressure loss prediction during an aerodynamic design stage, instead of a costly 3-D procedure for the row of discrete holes. In mass flow rate ratios of injection to main flow from 0% to 1%, the losses computed by the 2-D procedure agreed well with the experimental losses except for the pressure side injection cases. However, as the mass flow rate ratio was increased to 2.5%, the agreement became insufficient. The same tendency was observed in additional 3-D computations more closely modeling the injection hole shapes. The summations of both experimental and computed loss increases due to individual row injections were compared with both experimental and computed loss increases due to all-row injection with the mass flow rate ratio ranging from 0% to 7%. Each summation agreed well with each all-row injection result. Agreement between experimental and calculated results was acceptable. Therefore, the loss due to all-row injections in the design stage can be obtained by the correlations of 2-D calculated losses from individual row injections. To improve more precisely the summation prediction for the losses due to the present all-row injections, extensive research on the prediction for the losses due to the pressure side injection should be carried out.


Author(s):  
Zainuddin ◽  
Eswanto ◽  
Jufrizal ◽  
Mulyadi ◽  
Barita ◽  
...  

2016 ◽  
Vol 62 (No. 4) ◽  
pp. 170-178 ◽  
Author(s):  
R.A. Chayjan ◽  
M. Kaveh

A laboratory scale microwave-convection dryer was used to dry the eggplant fruit, applying microwave power in the range of 270–630 W, air temperature in the range of 40–70°C and air velocity in the range of 0.5–1.7 m/s. Six mathematical models were used to predict the moisture ratio of eggplant fruit slices in thin layer drying. The results showed that the Midilli et al. model had supremacy in prediction of turnip slice drying behavior. Minimum and maximum values of effective moisture diffusivity (D<sub>eff</sub>) were 1.52 × 10<sup>–9</sup> and 3.39 × 10<sup>–9</sup> m<sup>2</sup>/s, respectively. Activation energy values of eggplant slices were found between 13.33 and 17.81 kJ/mol for 40°C to 70°C, respectively. The specific energy consumption for drying eggplant slices was calculated at the boundary of 86.47 and 194.37 MJ/kg. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the drying rate and moisture ratio was investigated. Microwave power, drying air temperature, air velocity and drying time were considered as input parameters for the model.


Author(s):  
Yanan Chen ◽  
Jie Wen ◽  
Guoqiang Xu ◽  
Zhiliang Du ◽  
Yunqing Dai

The heat transfer characteristics in a rotating pin-fin roughened rectangular channel with an aspect ratio of 4:1 is investigated, simulating a rotor blade trailing edge. The copper plate regional average method is used to determine the heat transfer coefficient. A second inlet is added at the inner top corner of the traditional one-inlet cooling channel to improve heat transfer in the high radius region. Coolant from these two inlets mixes in the middle of the channel, and then exits through eight sidewall slots. The channel is assembled in a rotating facility, and the symmetrical plane of the rectangular channel is orientated at an angle of 135° with respect to the rotation plane. The mass flow rate of the bottom inlet is kept at a constant (Re1 = 20,000), whereas the inlet mass flow rate ratio (MR, second inlet mass flow rate/bottom inlet mass flow rate) changes from 0 to around 0.55. Results show that the second inlet improves the heat transfer in the proximity of the second inlet extensively, but the overall averaged heat transfer is decreased a bit compared to the one inlet channel. Moreover, with the local MR, the heat transfer data at different locations converge into the same trend, indicating that the local MR should be a good parameter in describing the flow in this pin-fin cooling channel. In the rotating one-inlet channel (MR = 0), a critical Ro phenomenon is observed. After the critical point, rotation stops decreasing heat transfer and starts to elevate it. A lower critical Ro is observed at higher radius location but the corresponding local Ro is a constant at around 1.0. In rotating two-inlet channel, the overall heat transfer enhancement caused by rotation is almost in the same level with different MR, indicating that high MR cases (MR > 0.2) is not recommended because the coolant from the second inlet is not efficiently used.


Sign in / Sign up

Export Citation Format

Share Document