scholarly journals Load Balancing for Effective Resource Provisioning in a Heterogeneous Cluster using Machine Learning

Compute Clusters are typically installed to increase performance and/or accessibility. Appropriate Resource Provisioning is a key feature in clustered computing environments to avoid provisioning resources lower than the actual requirement and provisioning of resources in excess. In this paper, a load balancing scheme leading to effective provisioning of resources have been proposed. Job History of compute-intensive jobs have been collected by conducting experiments to observe basic parameters of a job in a heterogeneous computing cluster environment. A Machine Learning model using Multi-Layer Perceptron and Support Vector Machine for provisioning of resources has been presented. The prediction model uses the job history collected from the cluster environment to predict the resource that would be appropriate for provisioning in future. The accuracy of the model is computed and the results of experiments show that Multi-Layer Perceptron presents a better performance than Support Vector Machine

2019 ◽  
Vol 16 (2) ◽  
pp. 5-16
Author(s):  
Amit Singh ◽  
Ivan Li ◽  
Otto Hannuksela ◽  
Tjonnie Li ◽  
Kyungmin Kim

Gravitational waves are theorized to be gravitationally lensed when they propagate near massive objects. Such lensing effects cause potentially detectable repeated gravitational wave patterns in ground- and space-based gravitational wave detectors. These effects are difficult to discriminate when the lens is small and the repeated patterns superpose. Traditionally, matched filtering techniques are used to identify gravitational-wave signals, but we instead aim to utilize machine learning techniques to achieve this. In this work, we implement supervised machine learning classifiers (support vector machine, random forest, multi-layer perceptron) to discriminate such lensing patterns in gravitational wave data. We train classifiers with spectrograms of both lensed and unlensed waves using both point-mass and singular isothermal sphere lens models. As the result, classifiers return F1 scores ranging from 0:852 to 0:996, with precisions from 0:917 to 0:992 and recalls ranging from 0:796 to 1:000 depending on the type of classifier and lensing model used. This supports the idea that machine learning classifiers are able to correctly determine lensed gravitational wave signals. This also suggests that in the future, machine learning classifiers may be used as a possible alternative to identify lensed gravitational wave events and to allow us to study gravitational wave sources and massive astronomical objects through further analysis. KEYWORDS: Gravitational Waves; Gravitational Lensing; Geometrical Optics; Machine Learning; Classification; Support Vector Machine; Random Tree Forest; Multi-layer Perceptron


2022 ◽  
Vol 22 (1) ◽  
pp. 1-35
Author(s):  
Muhammad Junaid ◽  
Adnan Sohail ◽  
Fadi Al Turjman ◽  
Rashid Ali

Over the years cloud computing has seen significant evolution in terms of improvement in infrastructure and resource provisioning. However the continuous emergence of new applications such as the Internet of Things (IoTs) with thousands of users put a significant load on cloud infrastructure. Load balancing of resource allocation in cloud-oriented IoT is a critical factor that has a significant impact on the smooth operation of cloud services and customer satisfaction. Several load balancing strategies for cloud environment have been proposed in the past. However the existing approaches mostly consider only a few parameters and ignore many critical factors having a pivotal role in load balancing leading to less optimized resource allocation. Load balancing is a challenging problem and therefore the research community has recently focused towards employing machine learning-based metaheuristic approaches for load balancing in the cloud. In this paper we propose a metaheuristics-based scheme Data Format Classification using Support Vector Machine (DFC-SVM), to deal with the load balancing problem. The proposed scheme aims to reduce the online load balancing complexity by offline-based pre-classification of raw-data from diverse sources (such as IoT) into different formats e.g. text images media etc. SVM is utilized to classify “n” types of data formats featuring audio video text digital images and maps etc. A one-to-many classification approach has been developed so that data formats from the cloud are initially classified into their respective classes and assigned to virtual machines through the proposed modified version of Particle Swarm Optimization (PSO) which schedules the data of a particular class efficiently. The experimental results compared with the baselines have shown a significant improvement in the performance of the proposed approach. Overall an average of 94% classification accuracy is achieved along with 11.82% less energy 16% less response time and 16.08% fewer SLA violations are observed.


Traffic incidents dont only cause various levels of traffic congestion but often contribute to traffic accidents and secondary accidents, resulting in substantial loss of life, economy, and productivity loss in terms of injuries and deaths, increased travel times and delays, and excessive consumption of energy and air pollution. Therefore, it is essential to accurately estimate the duration of the incident to mitigate these effects. Traffic management center incident logs and traffic sensors data from Eastbound Interstate 70 (I-70) in Missouri, United States collected during the period from January 2015 to January 2017, with a total of 352 incident records were used to develop incident duration estimation models. This paper investigated different machine learning (ML) methods for traffic incidents duration prediction. The attempted ML techniques include Support Vector Machine (SVM), Random Forest (RF), and Neural Network Multi-Layer Perceptron (MLP). Root mean squared error (RMSE) and Mean absolute error (MAE) were used to evaluate the performance of these models. The results showed that the performance of the models was comparable with SVM models slightly outperforms the RF, and MLP models in terms of MAE index, where MAE was 14.23 min for the best-performing SVM models. Whereas, in terms of the RMSE index, RF models slightly outperformed the other two models given RMSE of 18.91 min for the best-performing RF model. Index Terms— Incident Duration, Neural Network Multi-Layer Perceptron, Random Forest, Support Vector Machine.


2020 ◽  
Author(s):  
◽  
Teja Venkat Pavan Kotapati

A lot of research on prediction of cancer survivability has been done by implementing various machine learning models and it has always been a challenging task. In this project, the main focus is to perform a comprehensive evaluation of machine learning models across multiple cancer cohorts and find the models with better prediction capability. Class balancing techniques like oversampling and undersampling were implemented into the models to improve the performance of cancer survival prediction. SEER cancer dataset (1973-2015) was used for this project. After preprocessing, we included a total of 21 independent variables and a dependent variable. Multiple machine learning models like Decision Trees, Logistic Regression, Naive Bayes, Support Vector Machine, Random Forests and Multi-Layer Perceptron were implemented. Bias between training and testing data was eliminated by implementing stratified 10-fold crossvalidation. The experimental design was in such a way that all the machine learning models were implemented across seven cancer cohorts using all eligible records each cohort as well as using two sampling techniques for class balancing. Performance of the machine learning models were compared based on the metrics like Sensitivity, Accuracy, Specificity, Precision, F1 score and AUC scores. A total of 168 experimental models were designed and implemented. Comparison between the predictive models showed that Random Forests have best predicted for cancer survivability, Support Vector Machine came as second-best predictors, Logistic Regression as third, then Decision Trees, Multi-Layer Perceptron and lastly Naive Bayes with least performance. The results clearly indicated that implementing class balancing techniques also improved the performance of the models significantly.


2020 ◽  
Vol 25 (1) ◽  
pp. 24-38
Author(s):  
Eka Patriya

Saham adalah instrumen pasar keuangan yang banyak dipilih oleh investor sebagai alternatif sumber keuangan, akan tetapi saham yang diperjual belikan di pasar keuangan sering mengalami fluktuasi harga (naik dan turun) yang tinggi. Para investor berpeluang tidak hanya mendapat keuntungan, tetapi juga dapat mengalami kerugian di masa mendatang. Salah satu indikator yang perlu diperhatikan oleh investor dalam berinvestasi saham adalah pergerakan Indeks Harga Saham Gabungan (IHSG). Tindakan dalam menganalisa IHSG merupakan hal yang penting dilakukan oleh investor dengan tujuan untuk menemukan suatu trend atau pola yang mungkin berulang dari pergerakan harga saham masa lalu, sehingga dapat digunakan untuk memprediksi pergerakan harga saham di masa mendatang. Salah satu metode yang dapat digunakan untuk memprediksi pergerakan harga saham secara akurat adalah machine learning. Pada penelitian ini dibuat sebuah model prediksi harga penutupan IHSG menggunakan algoritma Support Vector Regression (SVR) yang menghasilkan kemampuan prediksi dan generalisasi yang baik dengan nilai RMSE training dan testing sebesar 14.334 dan 20.281, serta MAPE training dan testing sebesar 0.211% dan 0.251%. Hasil penelitian ini diharapkan dapat membantu para investor dalam mengambil keputusan untuk menyusun strategi investasi saham.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


Sign in / Sign up

Export Citation Format

Share Document