scholarly journals Performance Assessment of 3d Printed Parts Fabricated By Fdm using Three Different Materails

A tremendous research has been notices in the field of three dimensional printing. An experimental study has been carried out for three dimensional printing to analyses the surface roughness and ultimate tensile strength of three different materials. The study has been conducted using Taguchi design of experiment. from the study it has been depicted that the infill percentage has a significant effect on the output.

2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Nuno Venâncio ◽  
Gabriela G. Pereira ◽  
João F. Pinto ◽  
Ana I. Fernandes

Patient-centric therapy is especially important in pediatrics and may be attained by three-dimensional printing. Filaments containing 30% w/w of theophylline were produced by hot-melt extrusion and printed using fused deposition modelling to produce tablets. Here, preliminary results evaluating the effect of infill geometry (cross, star, grid) on drug content and release are reported.


“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


Author(s):  
Diogo José Horst ◽  
Pedro Paulo Andrade Junior

Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 655 ◽  
Author(s):  
Seong-Woo Hong ◽  
Ji-Young Yoon ◽  
Seong-Hwan Kim ◽  
Sun-Kon Lee ◽  
Yong-Rae Kim ◽  
...  

In this study, a soft structure with its stiffness tunable by an external field is proposed. The proposed soft beam structure consists of a skin structure with channels filled with a magnetorheological fluid (MRF). Two specimens of the soft structure are fabricated by three-dimensional printing and fused deposition modeling. In the fabrication, a nozzle is used to obtain channels in the skin of the thermoplastic polyurethane, while another nozzle is used to fill MRF in the channels. The specimens are tested by using a universal tensile machine to evaluate the relationships between the load and deflection under two different conditions, without and with permanent magnets. It is empirically shown that the stiffness of the proposed soft structure can be altered by activating the magnetic field.


2018 ◽  
Vol 17 (11) ◽  
pp. 2056-2060 ◽  
Author(s):  
Miguel Ferrando-Rocher ◽  
Jose I. Herranz-Herruzo ◽  
Alejandro Valero-Nogueira ◽  
Bernardo Bernardo-Clemente

2020 ◽  
Vol 57 (8) ◽  
pp. 1041-1044
Author(s):  
Matthias Schlund ◽  
Jean-Marc Levaillant ◽  
Romain Nicot

Parental prenatal counseling is of paramount significance since parents often experience an emotional crisis with feelings of disappointment and helplessness. Three-dimensional (3D) printed model of the unborn child’s face presenting with cleft lip and palate, based on ultrasonographic information, could be used to provide visual 3D information, further enhancing the prospective parent’s comprehension of their unborn child’s pathology and morphology, helping them to be psychologically prepared and improving the communication with the caretaking team. Prospective parents appreciate if prenatal counseling is available with the most detailed information as well as additional resources. The technique necessary to create 3D models after ultrasonographic information is explained, and the related costs are evaluated. The use of such models in parental education is then discussed.


2019 ◽  
Vol 4 (1) ◽  
pp. 26-40 ◽  
Author(s):  
Diogo José Horst ◽  
Pedro Paulo Andrade Junior

Conductive and magnetic filaments are revolutionizing three-dimensional printing (3DP) to a new level. This review study presents the current state of the art on the subject, summarizing recent high impact studies about main advances regarding the application of 3DP filaments based on carbon nanostructures such as graphene, carbon fibers, nanotubes, and conductive carbon black embedded in a polymer matrix, by reviewing its main characteristics and showing the main producers and also the products available on the market. The availability of inexpensive, reliable, and electrically conductive material will be indispensable for the fabrication of circuits and sensors before the full potential of 3DP for customized products incorporating electrical elements can be fully explored.


2022 ◽  
Vol 14 (1) ◽  
pp. 32-39
Author(s):  
Sachit Anand ◽  
Nellai Krishnan ◽  
Prabudh Goel ◽  
Anjan Kumar Dhua ◽  
Vishesh Jain ◽  
...  

Background: In cases with solid tumors, preoperative radiological investigations provide valuable information on the anatomy of the tumor and the adjoining structures, thus helping in operative planning. However, due to a two-dimensional view in these investigations, a detailed spatial relationship is difficult to decipher. In contrast, three-dimensional (3D) printing technology provides a precise topographic view to perform safe surgical resections of these tumors. This systematic review aimed to summarize and analyze current evidence on the utility of 3D printing in pediatric extra-cranial solid tumors. Methods: The present study was registered on PROSPERO—international prospective register of systematic reviews (registration number: CRD42020206022). PubMed, Embase, SCOPUS, and Google Scholar databases were explored with appropriate search criteria to select the relevant studies. Data were extracted to study the bibliographic information of each article, the number of patients in each study, age of the patient(s), type of tumor, organ of involvement, application of 3D printing (surgical planning, training, and/or parental education). The details of 3D printing, such as type of imaging used, software details, printing technique, printing material, and cost were also synthesized. Results: Eight studies were finally included in the systematic review. Three-dimensional printing technology was used in thirty children with Wilms tumor (n = 13), neuroblastoma (n = 7), hepatic tumors (n = 8), retroperitoneal tumor (n = 1), and synovial sarcoma (n = 1). Among the included studies, the technology was utilized for preoperative surgical planning (five studies), improved understanding of the surgical anatomy of solid organs (two studies), and improving the parental understanding of the tumor and its management (one study). Computed tomography and magnetic resonance imaging were either performed alone or in combination for radiological evaluation in these children. Different types of printers and printing materials were used in the included studies. The cost of the 3D printed models and time involved (range 10 h to 4–5 days) were reported by two studies each. Conclusions: 3D printed models can be of great assistance to pediatric surgeons in understanding the spatial relationships of tumors with the adjacent anatomic structures. They also facilitate the understanding of families, improving doctor–patient communication.


2021 ◽  
Author(s):  
Tobias Butelmann ◽  
Hans Priks ◽  
Zoel Parent ◽  
Trevor G. Johnston ◽  
Tarmo Tamm ◽  
...  

AbstractThe three-dimensional printing of cells offers an attractive opportunity to design and develop innovative biotechnological applications, such as the fabrication of biosensors or modular bioreactors. Living materials (LMs) are cross-linked polymeric hydrogel matrices containing cells, and recently, one of the most deployed LMs consists of F127-bis-urethane methacrylate (F127-BUM). The material properties of F127-BUM allow reproducible 3D printing and stability of LMs in physiological environments. These materials are permissible for small molecules like glucose and ethanol. However, no information is available for oxygen, which is essential— for example, towards the development of aerobic bioprocesses using microbial cell factories. To address this challenge, we investigated the role of oxygen as a terminal electron acceptor in the budding yeast’s respiratory chain and determined its permissibility in LMs. We quantified the ability of cell-retaining LMs to utilize oxygen and compared it with cells in suspension culture. We found that the cells’ ability to consume oxygen was heavily impaired inside LMs, indicating that the metabolism mostly relied on fermentation instead of respiration. To demonstrate an application of these 3D printed LMs, we evaluated a comparative brewing process. The analysis showed a significantly higher (3.7%) ethanol production using 3D printed LMs than traditional brewing, indicating an efficient control of the metabolism. Towards molecular and systems biology studies using LMs, we developed a highly reliable method to isolate cells from LMs for flow cytometry and further purified macromolecules (proteins, RNA, and DNA). Our results show the application of F127-BUM-based LMs for microaerobic processes and envision the development of diverse bioprocesses using versatile LMs in the future.


2020 ◽  
Vol 9 (12) ◽  
pp. 4008
Author(s):  
Simon Raveau ◽  
Fabienne Jordana

The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics. They can be monophasic or multiphasic and tend to recreate the architectural structure of the periodontal tissue. In order to enhance the bioactivity and have a higher regeneration, the scaffolds can be embedded with stem cells and/or growth factors. This new technique could enhance a complete periodontal regeneration. This review summarizes the application of 3D printed scaffolds in periodontal regeneration. The process, the materials and designs, the key advantages and prospects of 3D bioprinting are highlighted, providing new ideas for tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document