scholarly journals GPS Receiver Position Interpretation using Single Point PVT Estimation Algorithm

In our day-to-day lives, we need to get the correct GPS location information. GPS is based on the calculation of the pseudo-range and four unspecified parameters, but the formula is not linear in navigation observation. A single point position algorithm can solve the nonlinear equation; the algorithm is based on Taylor linearization. This paper provides an overview of the single point PVT algorithm and presents the GPS satellite pseudo-range observation equations, typically over-determined as there are only four unknown satellites, but generally, more than four are monitored and thus more than four pseudo-range observation equations. Single point PVT estimation algorithm is used to solve pseudo range observation equations in order to find position and clock bias solutions are described in detail. In this article, the position of GPS receiver is estimated w.r.t. to X, Y, Z Coordinates, in addition to that clock bias also estimated.

Author(s):  
Sirish Kumar Pagoti ◽  
Bala Sai Srilatha Indira Dutt Vemuri ◽  
Ganesh Laveti

If any Global Positioning System (GPS) receiver is operated in low latitude regions or urban canyons, the visibility further reduces. These system constraints lead to many challenges in providing precise GPS position accuracy over the Indian subcontinent. As a result, the standalone GPS accuracy does not meet the aircraft landing requirements, such as Category I (CAT-I) Precision Approaches. However, the required accuracy can be achieved by augmenting the GPS. Among all these issues, the predominant factors that significantly influence the receiver position accuracy are selecting a user/receiver position estimation algorithm. In this article, a novel method is proposed based on correntropy and designated as Correntropy Kalman Filter (CKF) for precise GPS applications and GPS Aided Geosynchronous equatorial orbit Augmented Navigation (GAGAN) based aircraft landings over the low latitude Indian subcontinent. The real-world GPS data collected from a dual-frequency GPS receiver located in the southern region of the Indian subcontinent (IISc), Bangalore with Lat/Long: 13.021°N/ 77.5°E) is used for the performance evaluation of the proposed algorithm. Results prove that the proposed CKF algorithm exhibits significant improvement (up to 34%) in position estimation compared to the traditional Kalman Filter.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 739
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

The paper presents a new concept of determining the resultant position of a UAV (Unmanned Aerial Vehicle) based on individual SBAS (Satellite-Based Augmentation System) determinations from all available EGNOS (European Geostationary Navigation Overlay Service) satellites for the SPP (Single Point Positioning) code method. To achieve this, the authors propose a weighted mean model to integrate EGNOS data. The weighted model was based on the inverse of the square of the mean position error along the component axes of the BLh ellipsoidal frame. The calculations included navigation data from the EGNOS S123, S126, S136 satellites. In turn, the resultant UAV position model was determined using the Scilab v.6.0.0 software. Based on the proposed computational strategy, the mean values of the UAV BLh coordinates’ standard deviation were better than 0.2 m (e.g., 0.0000018° = 0.01″ in angular measurement). Additionally, the numerical solution used made it possible to increase the UAV’s position accuracy by about 29% for Latitude, 46% for Longitude and 72% for ellipsoidal height compared to the standard SPP positioning in the GPS receiver. It is also worth noting that the standard deviation of the UAV position calculated from the weighted mean model improved by about 21 ÷ 50% compared to the arithmetic mean model’s solution. It can be concluded that the proposed research method allows for a significant improvement in the accuracy of UAV positioning with the use of EGNOS augmentation systems.


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Joko Setiadi

Abstrak Penggunaan receiver GPS RTK (Real Time Kinematic) pada metode ekstraterestrial untuk penentuan posisi titik saat ini sudah banyak diterapkan. Penelitian ini bertujuan mengkaji sampai sejauh mana ketelitian posisi titik yang diperoleh dari hasil pengukuran secara ekstraterestrial menggunakan GPS RTK untuk pemetaan bidang-bidang tanah berikut kekurangan dan kelebihannya. Dari hasil pengukuran didapat ketelitian rata-rata hasil pengukuran posisi titik menggunakan GPS RTK dibandingkan dengan menggunakan alat ETS (Electronic Total Station) adalah sebesar 0,214 m sehingga dapat diterapkan untuk pembuatan peta skala 1 : 500. Untuk daerah yang terbuka, pengukuran bidang tanah menggunakan GPS RTK memerlukan waktu dua kali lebih cepat dibandingkan dengan ETS. Walaupun GPS RTK mempunyai keunggulan dalam hal efisiensi proses pengukuran di lapangan sehingga dapat mempersingkat waktu pengukuran, akan tetapi memiliki kekurangan dalam hal ketelitian data terutama pada area pengukuran yang tertutup. Kata kunci: GPS RTK, ETS, posisi titik, ekstraterestrial.   Abstract The use of RTK GPS receiver (Real Time Kinematic) on extraterrestrial method for point positioning h widely applied. The purpose of this study is to examine the point position accuracy obtained from the measurements using GPS RTK for extraterrestrial mapping plots, including its advantages and disadvantages. Measurement accuracy of the results obtained from the average measurement point positioning using GPS RTK compared using the ETS tool is equal to 0.214 m, so that it can be applied for map making of scale 1: 500. For open areas, field measurements using GPS RTK can be performed by two times faster than using ETS. Although GPS RTK has advantages in terms of measurements process efficiency in the field so as to shorten the time of measurement, but has shortcomings in terms of accuracy of the data, especially in an enclosed area measuring. Keywords: GPS RTK , ETS, point position, extraterrestrial.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3791
Author(s):  
Renata Pelc-Mieczkowska ◽  
Dariusz Tomaszewski

In Global Navigation Satellite Systems (GNSS) positioning, important terms in error budget are satellite orbits and satellite clocks correction errors. International services are developing and providing models and correction to minimize the influence of these errors both in post-processing and real-time applications. The International GNSS Service (IGS) Real-Time Service (RTS) provides real-time orbits and clock corrections for the broadcast ephemeris. Real-time products provided by IGS are generated by different analysis centres using different algorithms. In this paper, four RTS products—IGC01, CLK01, CLK50, and CLK90—were evaluated and analysed. To evaluate State Space Representation (SSR) products’ GPS satellites, the analyses were made in three variants. In the first approach, geocentric real-time Satellite Vehicle (SV) coordinates and clock corrections were calculated. The obtained results were compared with the final IGS, ESA, GFZ, and GRG ephemerides. The second approach was to use the corrected satellite positions and clock corrections to determine the Precise Point Position (PPP) of the receiver. In the third analysis, the impact of SSR corrections on receiver Single Point Position (SPP) was evaluated. The first part of the research showed that accuracy of the satellite position is better than 10 cm (average 3 to 5 cm), while in the case of clock corrections, mean residuals range from 2 cm to 17 cm. It should be noted that the errors of the satellites positions obtained from one stream differ depending on the reference data used. This shows the need for an evaluation of correction streams in the domain of the receiver position. In the case of PPP in a kinematic mode, the tests allowed to determine the impact that the use of different streams has on the final positioning results. These studies showed differences between specific streams, which could not be seen in the first study. The best results (3D RMS at 0.13 m level) were obtained for the CLK90 stream, while for IGC01, the results were three times worse. The SPP tests clearly indicate that regardless of the selected SSR stream, one can see a significant improvement in positioning accuracy as compared to positioning results using only broadcast ephemeris.


2010 ◽  
Vol 439-440 ◽  
pp. 286-291 ◽  
Author(s):  
Yu Wang ◽  
Zhen Yao Zheng

Global Positioning System(GPS)is able to identify real-time information of moving objects quickly and efficiently, such as longitude, latitude, altitude, time and so on. So it has to give the positioning and navigation of objects. This research uses GPS9540 receiver module to receive satellite signals. The time information and location information of this kind of GPS receiver module is GPRMC statement of NMEA-0183 standard format. We use AT89C51 Single Chip Microcomputer (SCM) of ATMEL Corporation as the core controller, and use the serial port of SCM to receive the time information and location information of GPS receiver module. We adjust the time difference information of the GPS receiver module, and finally display acquired location and time information through the liquid crystal display module (LCD). Actual operating results show that the system can decode GPS location information and time information correctly, and positioning information and time information is displayed on the LCD correctly. The system has good reliability and practicality, and it can be used for object location and navigation. This research first introduces the applications and theory of GPS as well as the extraction methods of GPS module output data. Then we introduce the system hardware block diagram and schematic, as well as system software flow chart and software programming, thus we achieve the key technology research of the GPS positioning system.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 767
Author(s):  
Christos Athanasiadis ◽  
Dimitrios Doukas ◽  
Theofilos Papadopoulos ◽  
Antonios Chrysopoulos

Smart-meter technology advancements have resulted in the generation of massive volumes of information introducing new opportunities for energy services and data-driven business models. One such service is non-intrusive load monitoring (NILM). NILM is a process to break down the electricity consumption on an appliance level by analyzing the total aggregated data measurements monitored from a single point. Most prominent existing solutions use deep learning techniques resulting in models with millions of parameters and a high computational burden. Some of these solutions use the turn-on transient response of the target appliance to calculate its energy consumption, while others require the total operation cycle. In the latter case, disaggregation is performed either with delay (in the order of minutes) or only for past events. In this paper, a real-time NILM system is proposed. The scope of the proposed NILM algorithm is to detect the turning-on of a target appliance by processing the measured active power transient response and estimate its consumption in real-time. The proposed system consists of three main blocks, i.e., an event detection algorithm, a convolutional neural network classifier and a power estimation algorithm. Experimental results reveal that the proposed system can achieve promising results in real-time, presenting high computational and memory efficiency.


1982 ◽  
Vol 36 (1) ◽  
pp. 29-42
Author(s):  
GÉrard Lachapelle ◽  
Norman Beck

Sheltech Canada’s active involvement in the use of Navstar/GPS for positioning was highlighted by the acquisition, in mid 1980, of a second generation geodetic receiver from Stanford Telecommunications Inc. of Sunnyvale, California, U.S.A. A brief description of Sheltech’s STI 5010 GPS receiver, auxiliary equipment and real-time software required to operate the system is presented. Mathematical models and least-squares algorithms used to derive three-dimensional positions from pseudorange observations are described. Related validation tests carried out over several months indicate that the anticipated 10-m accuracy (1 σ level) for instantaneous single point positioning, predicted for the fully operational GPS constellation starting in 1987, is already achievable for certain periods of time. Sheltech’s future plans regarding offshore and land positioning, and the integration of the GPS receiver system with other navigation aids, e.g., inertial systems, are summarized.


Sign in / Sign up

Export Citation Format

Share Document