scholarly journals Performance Analysis of Rectangular Patch Antenna with Dielectric Constants

The developments in communication systems, patch antennas play a very significant role in today’s world of communication systems. The most commonly used micro strip patch antennas are Rectangular patch antennas. The rectangular micro strip patch antenna parameters are analyzed for S-band frequency which is used for wireless communications(2.0-2.5GHz). In this design, performance parameters like V.S.W.R, Returnloss, are simulated and radiation patterns are observed. Rectangular patch antenna is designed with uniform and non-uniform linear arrays. The uniform and non-uniform arrays are designed with Dolph-Tschebycheff.

In modern world, communication systems requires development of low cost, minimal weight, and low profile antennas which are capable of maintaining high performance over wide range of frequencies. Patch antenna is one such antenna which fulfills the demands of current communication systems. The widely used microstrip patch antennas are rectangular patch antennas. This paper presenting the application of binary coded Genetic Algorithm (BGA) which is applied to the rectangular patch microstrip antenna with uniform linear arrays. The fitness function of GA is maximum reduction in peak side lobe level of the radiation pattern of the antenna with maximum reduction in the side lobe level and also achieved the minimum possible null to null beam width, the resultant radiation patterns for both before GA and after GA of microstrip array are compared. The radiation patterns are presented for 20,50,100 number of elements. All the simulated results are obtained by using MATLAB software.


2020 ◽  
Vol 79 (11) ◽  
pp. 963-972
Author(s):  
V. Asokan ◽  
K. Senthilkumar ◽  
M. Palanivelan ◽  
J. Karthi ◽  
M. Lakshmanan

2021 ◽  
Vol 2114 (1) ◽  
pp. 012051
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhi ◽  
Ahmed A. Naser

Abstract Antenna studies on various wireless communication systems have been carried out by many academics. In this research, the omnidirectional microstrip patch antenna (MPA) is proposed, manufactured, and tested. The operating bandwidth of the antenna is quite suitable for the different applications. The proposed antenna fabricated on the flame retardant (FR-4) substrate with a volume of 75.85 × 57.23 × 1.59 mm3. Computer simulation technology (CST) studio used to design and simulate. Experimental results show that the return loss (RL), bandwidth (BW), voltage standing wave ratio (VSWR) and input impedance (Zin ) are -25.26 dB, 61 MHz, 1.12 and 54.46 Ω, respectively. The antenna operates at 2.42 GHz (from 2.39 to 2.45 GHz), which has good performance in the Wi-Fi, Bluetooth, and ZigBee communications.


2019 ◽  
Vol 105 (3) ◽  
pp. 819-833 ◽  
Author(s):  
Majed O. Dwairi ◽  
Mohamed S. Soliman ◽  
Ahmad A. Alahmadi ◽  
Sami H. A. Almalki ◽  
Iman I. M. Abu Sulayman

2015 ◽  
Vol 8 (6) ◽  
pp. 915-919 ◽  
Author(s):  
Neeraj Rao ◽  
Dinesh Kumar Vishwakarma

This is the first report on novel mushroom-type electromagnetic band gap (EBG) structures, consisting of fractal periodic elements, used for enhancing the gain of microstrip patch antennas. Using CST Microwave studio the performance of rectangular patch antenna has been examined on proposed fractal EBG substrates. It is found that fractal EBGs are more effective in suppressing surface wave thus resulting in higher gain. The gain of rectangular patch has been improved from 6.88 to 10.67 dBi. The proposed fractal EBG will open new avenues for the design and development of variety of high-frequency components and devices with enhanced performance.


2021 ◽  
Vol 23 (05) ◽  
pp. 806-815
Author(s):  
Nivedita Mishra ◽  
◽  
Dr. Saima Beg ◽  
Anand Kumar Gupta ◽  
◽  
...  

The following is an abstract of the paper, the mirror image design parameters and effective results for an antenna with a rectangular microstrip overlay using IE3D software is described that outcomes of the simulations and designs are displayed. The probe feed approach was used to generate the microstrip patch pattern. Such patch antennas have been investigated due to their large bandwidth and gain. This antenna is fabricated on an FR-4 epoxy substrate. This antenna’s performance and results are also matched to a standard rectangular patch antenna. Variables are utilized to improve the antenna’s simulation results are as position, space, length, and width of different mirror images T and I shaped antenna slots. The measured results from the simulated design show that the designed construction resonates at various closely separated frequencies that are within the frequency band allotment for wireless applications. At resonance frequencies of 2GHz to 3GHz, the bandwidth and return loss are significantly enhanced.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 502 ◽  
Author(s):  
Junho Yeo ◽  
Jong-Ig Lee

A slot-loaded microstrip patch sensor antenna is proposed to enhance sensitivity in measuring the permittivity of planar materials. A thin rectangular slot was etched along the radiating edge of a rectangular patch antenna fed by a microstrip transmission line. Two resonant frequencies were created at a lower frequency compared to the single resonant frequency of a conventional ordinary patch antenna. The sensitivity of the proposed slot-loaded patch antenna was measured by the shift in the resonant frequency of the input reflection coefficient when the planar dielectric superstrate was placed above the patch, and was compared with that of a conventional patch antenna without the slot. The two antennas were designed and fabricated on a 0.76 mm-thick RF-35 substrate for the first resonant frequency to resonate at 2.5 GHz under unloaded conditions. Five different standard dielectric samples with dielectric constants ranging from 2.17 to 10.2 were tested for sensitivity comparison. The experiment results showed that the measured sensitivity of the proposed patch antenna were 3.54 to 4.53 times higher, compared to a conventional patch antenna, for the five samples.


This paper present the brief view to design of a microstrip rectangular patch antenna. Microstrip patch antennas are used because of configuration such as low profile, conformal, light weight, and easy fabrication. The linear polarization and circularly polarization of microstrip patch antennas have attracted more attention recently. These antennas are significant due to their ability to improve the benefits of microwave imaging application. The Federal Communication Commission (FCC) has approved the frequency limit for narrowband and wideband antenna. One of the advantage of the narrow band technology is the design of feasible compact conformal antennas. Therefore a compact miniaturized microstrip rectangular patch antenna has been proposed to design for microwave imaging application. The miniaturization of microstrip patch antenna has been done to obtain the better narrow bandwidth, return loss and Voltage Standing Wave Ratio (VSWR). Ultra Wide Band (UWB) is achieved by using certain techniques which is used for expansion of bandwidth. The rectangular patch antenna with a 50Ωmicrostrip feed is fabricated on the FR4 substrate.


Sign in / Sign up

Export Citation Format

Share Document