scholarly journals Early Detection of Depression in Women using Machine Learning Methods

According to World Health Organisation(WHO), most prevailing mental sickness and leading evidence of disability is Depression. In India Depression is much more prevalent in women of all age groups. Eventhough effectual treatment is noted for Depression, it is not reaching the maximum number of sufferers in both wealthy and pathetic countries. In this respect, many scientific discipline and researchers have been employed to develop Machine Learning models to determine level of Depression. This paper presents background knowledge on depression and useage of machine learning and also review past studies that apply machine learning for determine depression with their merits and demerits.

2021 ◽  
Author(s):  
Christine Ji

BACKGROUND Linguistic accessibility has important impact on the reception and utilisation of translated health resources among multicultural and multilingual populations. Linguistic understandability of health translation has been under-studied. OBJECTIVE Our study aimed to develop novel machine learning models for the study of the linguistic accessibility of health translations comparing Chinese translations of the World Health Organisation health materials with original Chinese health resources developed by the Chinese health authorities. METHODS Using natural language processing tools for the assessment of the readability of Chinese materials, we explored and compared the readability of Chinese health translations from the World Health Organisation with original Chinese materials from China Centre for Disease Control and Prevention. RESULTS Pairwise adjusted t test showed that three new machine learning models achieved statistically significant improvement over the baseline logistic regression in terms of AUC: C5.0 decision tree (p=0.000, 95% CI: -0.249, -0.152), random forest (p=0.000, 95% CI: 0.139, 0.239) and XGBoost Tree (p=0.000, 95% CI: 0.099, 0.193). There was however no significant difference between C5.0 decision tree and random forest (p=0.513). Extreme gradient boost tree was the best model having achieved statistically significant improvement over the C5.0 model (p=0.003) and the Random Forest model (p=0.006) at the adjusted Bonferroni p value at 0.008. CONCLUSIONS The development of machine learning algorithms significantly improved the accuracy and reliability of current approaches to the evaluation of the linguistic accessibility of Chinese health information, especially Chinese health translations in relation to original health resources. Although the new algorithms developed were based on Chinese health resources, they can be adapted for other languages to advance current research in accessible health translation, communication, and promotion.


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


2021 ◽  
Vol 6 ◽  
pp. 309
Author(s):  
Paul Mwaniki ◽  
Timothy Kamanu ◽  
Samuel Akech ◽  
M. J. C Eijkemans

Introduction: Epidemiological studies that involve interpretation of chest radiographs (CXRs) suffer from inter-reader and intra-reader variability. Inter-reader and intra-reader variability hinder comparison of results from different studies or centres, which negatively affects efforts to track the burden of chest diseases or evaluate the efficacy of interventions such as vaccines. This study explores machine learning models that could standardize interpretation of CXR across studies and the utility of incorporating individual reader annotations when training models using CXR data sets annotated by multiple readers. Methods: Convolutional neural networks were used to classify CXRs from seven low to middle-income countries into five categories according to the World Health Organization's standardized methodology for interpreting paediatric CXRs. We compared models trained to predict the final/aggregate classification with models trained to predict how each reader would classify an image and then aggregate predictions for all readers using unweighted mean. Results: Incorporating individual reader's annotations during model training improved classification accuracy by 3.4% (multi-class accuracy 61% vs 59%). Model accuracy was higher for children above 12 months of age (68% vs 58%). The accuracy of the models in different countries ranged between 45% and 71%. Conclusions: Machine learning models can annotate CXRs in epidemiological studies reducing inter-reader and intra-reader variability. In addition, incorporating individual reader annotations can improve the performance of machine learning models trained using CXRs annotated by multiple readers.


2019 ◽  
pp. 29-43
Author(s):  
Anastasiya A. Korepanova ◽  
◽  
Valerii D. Oliseenko ◽  
Maxim V. Abramov ◽  
Alexander L. Tulupyev ◽  
...  

The article describes the approach to solving the problem of comparing user profiles of different social networks and identifying those that belong to one person. An appropriate method is proposed based on a comparison of the social environment and the values of account profile attributes in two different social networks. The results of applying various machine learning models to solving this problem are compared. The novelty of the approach lies in the proposed new combination of various methods and application to new social networks. The practical significance of the study is to automate the process of determining the ownership of profiles in various social networks to one user. These results can be applied in the task of constructing a meta-profile of a user of an information system for the subsequent construction of a profile of his vulnerabilities, as well as in other studies devoted to social networks.


2020 ◽  
Vol 214 ◽  
pp. 01023
Author(s):  
Linan (Frank) Zhao

Long-term unemployment has significant societal impact and is of particular concerns for policymakers with regard to economic growth and public finances. This paper constructs advanced ensemble machine learning models to predict citizens’ risks of becoming long-term unemployed using data collected from European public authorities for employment service. The proposed model achieves 81.2% accuracy on identifying citizens with high risks of long-term unemployment. This paper also examines how to dissect black-box machine learning models by offering explanations at both a local and global level using SHAP, a state-of-the-art model-agnostic approach to explain factors that contribute to long-term unemployment. Lastly, this paper addresses an under-explored question when applying machine learning in the public domain, that is, the inherent bias in model predictions. The results show that popular models such as gradient boosted trees may produce unfair predictions against senior age groups and immigrants. Overall, this paper sheds light on the recent increasing shift for governments to adopt machine learning models to profile and prioritize employment resources to reduce the detrimental effects of long-term unemployment and improve public welfare.


Data is the most crucial component of a successful ML system. Once a machine learning model is developed, it gets obsolete over time due to presence of new input data being generated every second. In order to keep our predictions accurate we need to find a way to keep our models up to date. Our research work involves finding a mechanism which can retrain the model with new data automatically. This research also involves exploring the possibilities of automating machine learning processes. We started this project by training and testing our model using conventional machine learning methods. The outcome was then compared with the outcome of those experiments conducted using the AutoML methods like TPOT. This helped us in finding an efficient technique to retrain our models. These techniques can be used in areas where people do not deal with the actual working of a ML model but only require the outputs of ML processes


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jacob Schreiber ◽  
Ritambhara Singh ◽  
Jeffrey Bilmes ◽  
William Stafford Noble

AbstractMachine learning models that predict genomic activity are most useful when they make accurate predictions across cell types. Here, we show that when the training and test sets contain the same genomic loci, the resulting model may falsely appear to perform well by effectively memorizing the average activity associated with each locus across the training cell types. We demonstrate this phenomenon in the context of predicting gene expression and chromatin domain boundaries, and we suggest methods to diagnose and avoid the pitfall. We anticipate that, as more data becomes available, future projects will increasingly risk suffering from this issue.


2020 ◽  
Author(s):  
A Pozzi ◽  
C Raffone ◽  
MG Belcastro ◽  
TL Camilleri-Carter

ABSTRACTObjectivesUsing cranial measurements in two Italian populations, we compare machine learning methods to the more traditional method of linear discriminant analysis in estimating sex. We use crania in sex estimation because it is useful especially when remains are fragmented or displaced, and the cranium may be the only remains found.Materials and MethodsUsing the machine learning methods of decision tree learning, support-vector machines, k-nearest neighbor algorithm, and ensemble methods we estimate the sex of two populations: Samples from Bologna and samples from the island of Sardinia. We used two datasets, one containing 17 cranial measurements, and one measuring the foramen magnum.Results and DiscussionOur results indicate that machine learning models produce similar results to linear discriminant analysis, but in some cases machine learning produces more consistent accuracy between the sexes. Our study shows that sex can be accurately predicted (> 80%) in Italian populations using the cranial measurements we gathered, except for the foramen magnum, which shows a level of accuracy of ∼70% accurate which is on par with previous geometric morphometrics studies using crania in sex estimation. We also find that our trained machine learning models produce population-specific results; we see that Italian crania are sexually dimorphic, but the features that are important to this dimorphism differ between the populations.


2019 ◽  
Author(s):  
Javier de Velasco Oriol ◽  
Antonio Martinez-Torteya ◽  
Victor Trevino ◽  
Israel Alanis ◽  
Edgar E. Vallejo ◽  
...  

AbstractBackgroundMachine learning models have proven to be useful tools for the analysis of genetic data. However, with the availability of a wide variety of such methods, model selection has become increasingly difficult, both from the human and computational perspective.ResultsWe present the R package FRESA.CAD Binary Classification Benchmarking that performs systematic comparisons between a collection of representative machine learning methods for solving binary classification problems on genetic datasets.ConclusionsFRESA.CAD Binary Benchmarking demonstrates to be a useful tool over a variety of binary classification problems comprising the analysis of genetic data showing both quantitative and qualitative advantages over similar packages.


Sign in / Sign up

Export Citation Format

Share Document