scholarly journals Experimented Examination of Power Produced for Dual Rotor Wind Turbine over Single Rotor Wind Turbine

As that wind energy is the vital energy resource which can be used widely to facilitate humane being prolong till the time nature or so called wind is there main aim of this paper is increase extraction percentage of energy from wind using dual rotor wind turbine connected on same axis, analysis were carried out experimentally for the increased power coefficient CP. It has been compared and found that with respect to single rotor or turbine dual wind power is having larger value of CP and torque, moreover instead of using one turbine for two turbine on same axis the value of CP increases with the better balancing stability, further the comparison is made with the performance of single bare wind turbine . Compare to that of single rotor if we used two rotor on same shaft then the torque and power increases on the other hand we will also get large stability due to weight balance condition and was found that large amount of energy can be extracted with comparatively larger value of torque. Experiment have been carried out on single rotor wind turbine and then dual rotor wind turbine after turbine development in the real atmospheric condition due to which different torque ,power produced, rotor speed was achieved which was analyzed and found fruitful where a large amount of power or torque is required.

2015 ◽  
Vol 793 ◽  
pp. 333-337 ◽  
Author(s):  
Abadal Salam T. Hussain ◽  
S. Faiz Ahmed ◽  
F. Malek ◽  
M.S. Jawad ◽  
Nursabrina Noorpi ◽  
...  

In many countries fossil fuels are used as the main source to generate electricity, but due to the increase in energy consumption and the rapid depletion of the fossil fuel resources, the demand of alternate energy sources such as solar, wind or hydro power becomes high [1]. In this paper wind energy as an alternate energy resource for electric power generation is proposed in the form of a small wind farm for grid-connected application in Perlis Malaysia. The monthly wind speed data of Perlis which is the smallest state of Malaysia were measured and the wind mill parameters such as Air Density, Blade Length, Power Coefficient and Blade Length were calculated. The mechanical output power of the proposed wind turbine form is calculated to check out its performance and reliability. The results showed that the proposed wind energy power generating system is a good choice and can be implemented in Malaysia to provide enough power for small towns and rural areas.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 776
Author(s):  
Byunghui Kim ◽  
Sang-June Park ◽  
Seokyoung Ahn ◽  
Myung-Gon Kim ◽  
Hyung-Gun Yang ◽  
...  

Although mega-watt class onshore and offshore wind power systems are used to generate power due to their cost-effectiveness, small wind power systems are important for household usages. Researchers have focused on aerodynamic characteristics as a conceptual design from their previous studies on Archimedes spiral wind turbines. Here, we verified the design of a small wind turbine AWM-750D (100 W capacity) via both numerical simulation and experimentation. We used commercial code ANSYS CFX for numerical simulation and compared turbulence models and surface roughness for determining the performance. To obtain reliable and robust blades, we analyzed the effective manufacturing method with Moldflow. Through a test with an open-suction type atmospheric boundary layer wind tunnel, we varied wind speed from 4.0 m/s to the rated value of 12.5 m/s and obtained 106 W, equivalent to a power coefficient of 0.205. In addition, we compared the numerical and experimental power vs. rotational speed and found the former is 6.5% lower than the latter. In this study, we proved that numerical simulations can act as design verification methods to predict wind turbine performances and reliable manufacturing. Through our research, we provided the prototype of a small wind turbine with 100 W to act as an efficient electric power supplier for households and also the stable manufacturing process for complex spiral blades using injection molding.


Author(s):  
Samyak Jain ◽  
Gautam Singh ◽  
Varun Yadav ◽  
Rahul Bisht

Currently, many countries are racing towards switching to clean energy resource (1). Among the options available Solar and Wind are two viable options that are economically feasible. Each day a new development is helping in bringing down the cost of energy extracted from these sources. With currently available technologies, solar energy is almost as expensive as the energy generated from burning coal, whereas wind energy is still slightly expensive (2). However, wind energy could be made cheaper by the use of a vertical axis wind turbine (3). However, structure is a major factor that is holding back the development of VAWTs with better efficiency (4). The efficiency of a VAWT depends upon its aspect ratio. Aspect Ratio is the ratio of the height of the blade to the diameter of the turbine. The lower the aspect ratio, the higher the efficiency (5). However, decreasing the AR would mean either increasing the diameter of the turbine or the height of the blade. In either case, the bending moment would increase on the struts, that connect the blades to the shaft. In this paper we propose, struts with airfoil cross-section. This is because, the lift generated by airfoil struts acts as additional support for the blade, thus increasing our ability to work at lower aspect ratios.


2021 ◽  
Author(s):  
◽  
Ramesh Kumar Behara

The growing needs for electric power around the world has resulted in fossil fuel reserves to be consumed at a much faster rate. The use of these fossil fuels such as coal, petroleum and natural gas have led to huge consequences on the environment, prompting the need for sustainable energy that meets the ever increasing demands for electrical power. To achieve this, there has been a huge attempt into the utilisation of renewable energy sources for power generation. In this context, wind energy has been identified as a promising, and environmentally friendly renewable energy option. Wind turbine technologies have undergone tremendous improvements in recent years for the generation of electrical power. Wind turbines based on doubly fed induction generators have attracted particular attention because of their advantages such as variable speed, constant frequency operation, reduced flicker, and independent control capabilities for maximum power point tracking, active and reactive powers. For modern power systems, wind farms are now preferably connected directly to the distribution systems because of cost benefits associated with installing wind power in the lower voltage networks. The integration of wind power into the distribution network creates potential technical challenges that need to be investigated and have mitigation measures outlined. Detailed in this study are both numerical and experimental models to investigate these potential challenges. The focus of this research is the analytical and experimental investigations in the integration of electrical power from wind energy into the distribution grid. Firstly, the study undertaken in this project was to carry out an analytical investigation into the integration of wind energy in the distribution network. Firstly, the numerical simulation was implemented in the MATLAB/Simulink software. Secondly, the experimental work, was conducted at the High Voltage Direct Centre at the University of KwaZulu-Natal. The goal of this project was to simulate and conduct experiments to evaluate the level of penetration of wind energy, predict the impact on the network, and propose how these impacts can be mitigated. From the models analysis, the effects of these challenges intensify with the increased integration of wind energy into the distribution network. The control strategies concept of the doubly fed induction generator connected wind turbine was addressed to ascertain the required control over the level of wind power penetration in the distribution network. Based on the investigation outcomes we establish that the impact on the voltage and power from the wind power integration in the power distribution system has a goal to maintain quality and balance between supply and demand.


Author(s):  
Aswini Kumar Dash ◽  
Biswajit Das

With the increase in awareness about protecting our environment and the support for the cause by all major economies of the world through the Kyoto Protocol, the importance of wind power has grown in stature since it is clean and the most viable renewable energy resource. The global annual market of new wind turbine installation is more than US$ 40 billion at current prices, considering world-wide installations of about 40000 MW annually. This paper reviews the growth of the wind power industry globally as well as in India. The opportunities for investment in this industry and problems associated with it are also discussed with specific reference to India. In the second part of this paper, the business model of two of the major wind turbine manufacturers of India, Suzlon Energy Limited, and Enercon India Limited are discussed and their strategies are compared.


2013 ◽  
Vol 14 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Kazuki Ogimi ◽  
Shota Kamiyama ◽  
Michael Palmer ◽  
Atsushi Yona ◽  
Tomonobu Senju ◽  
...  

Abstract In order to solve the problems of global warming and depletion of energy resource, renewable energy systems such as wind generation are getting attention. However, wind power fluctuates due to variation of wind speed, and it is difficult to perfectly forecast wind power. This paper describes a method to use power forecast data of wind turbine generators considering wind power forecast error for optimal operation. The purpose in this paper is to smooth the output power fluctuation of a wind farm and to obtain more beneficial electrical power for selling.


2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5809
Author(s):  
Tania García-Sánchez ◽  
Arbinda Kumar Mishra ◽  
Elías Hurtado-Pérez ◽  
Rubén Puché-Panadero ◽  
Ana Fernández-Guillamón

Currently, wind power is the fastest-growing means of electricity generation in the world. To obtain the maximum efficiency from the wind energy conversion system, it is important that the control strategy design is carried out in the best possible way. In fact, besides regulating the frequency and output voltage of the electrical signal, these strategies should also extract energy from wind power at the maximum level of efficiency. With advances in micro-controllers and electronic components, the design and implementation of efficient controllers are steadily improving. This paper presents a maximum power point tracking controller scheme for a small wind energy conversion system with a variable speed permanent magnet synchronous generator. With the controller, the system extracts optimum possible power from the wind speed reaching the wind turbine and feeds it to the grid at constant voltage and frequency based on the AC–DC–AC conversion system. A MATLAB/SimPowerSystems environment was used to carry out the simulations of the system. Simulation results were analyzed under variable wind speed and load conditions, exhibiting the performance of the proposed controller. It was observed that the controllers can extract maximum power and regulate the voltage and frequency under such variable conditions. Extensive results are included in the paper.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Author(s):  
P. Venkaiah ◽  
B. K. Sarkar

Abstract The advantages of renewable energy sources are available freely in nature, inexhaustible, produce either no or little pollution and low gestation period. Among all renewable energy sources, wind energy has become one of the leading resources for power production in the world as well as in the India. According to WWEA, the wind turbine installation capacity in the world has been reached over 539.291GW by the end of 2017. The entire wind power installed capacity by the end of 2017 covers more than 5% of global demand of electricity. In India, the present wind power installation capacity on October, 2017 was over 32.7GW and wind energy contribution is 55% of the total renewable energy capacity in the country. Inspite of having sharp growth rate in wind in India, only a fraction of wind energy has been tapped until now out of 302 GW wind potential which is available above 100 m height on shore. Practical horizontal axis wind turbine converts kinetic energy in the wind into useful energy by using airfoil blades. Blade element momentum (BEM) theory becomes very popular due to its simplicity in mathematical calculation as well as accuracy. Hydraulic pitch actuation system has certain advantages due to its versatility, ability to produce constant force and torque irrespective of the disturbances outside of the system, ease and accuracy of control, simplicity, safety and economy. In the present study a semi rotary actuator has been utilized for turbine pitch actuation. In order to extract maximum power from available wind, fractional order PID controller (FOPID) has been developed for pitch control of wind turbine rotor blade. The performances of PID as well as FOPID controller have been compared with available wind data. The performance of FOPID controller was satisfactory compare to PID controller.


Sign in / Sign up

Export Citation Format

Share Document