scholarly journals Enhancement of Coronary Blood Vessels based on Frangi’s Vesselness Filter and Morphological Operations

Cardiovascular diseases (CVDs) are the global cause of deaths and therefore research in modern medical image processing aims to develop a medical tools to assist the clinicians in vessel extraction, artery detection and 3D reconstruction. Vessel extraction is an important and trivial step which depends extremely on enhancement method. Extraction of coronary artery blood vessels from 3 Dimension (3D) Coronary Computed Tomography Angiography (CCTA) images is a demanding research objective to strengthen the diagnosis and therapy of coronary artery illness. This paper presents a vessel enhancement method of coronary artery blood vessels using Frangi’s vesselness measure and morphological operators. In the first stage of the proposed work, Preprocessing is performed to consider only the heart region. Next Frangi’s vesselness measure is calculated for the 3D CCTA images. While calculating the Frangi’s vesselness measure, four different types of gradient operators are used for calculating the Hessian matrix viz., Sobel, Prewitt, central difference and intermediate difference operators. In the second stage, the vessels are enhanced by morphological operations based on top hat and bottom hat operations. These morphological operations help in further enhancing the blood vessels. The proposed methodology was applied on 12 3D CCTA dataset and evaluated using quality measures such as MSE, PSNR, SSIM and FSIM. The results obtained based on the four gradient operators are compared. The statistical test viz., one way ANOVA was carried out on the results. The proposed method using Prewitt operator is able to extract even small vessels and the results seem to be promising.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuliang Ma ◽  
Xue Li ◽  
Xiaopeng Duan ◽  
Yun Peng ◽  
Yingchun Zhang

Purpose. Retinal blood vessel image segmentation is an important step in ophthalmological analysis. However, it is difficult to segment small vessels accurately because of low contrast and complex feature information of blood vessels. The objective of this study is to develop an improved retinal blood vessel segmentation structure (WA-Net) to overcome these challenges. Methods. This paper mainly focuses on the width of deep learning. The channels of the ResNet block were broadened to propagate more low-level features, and the identity mapping pathway was slimmed to maintain parameter complexity. A residual atrous spatial pyramid module was used to capture the retinal vessels at various scales. We applied weight normalization to eliminate the impacts of the mini-batch and improve segmentation accuracy. The experiments were performed on the DRIVE and STARE datasets. To show the generalizability of WA-Net, we performed cross-training between datasets. Results. The global accuracy and specificity within datasets were 95.66% and 96.45% and 98.13% and 98.71%, respectively. The accuracy and area under the curve of the interdataset diverged only by 1%∼2% compared with the performance of the corresponding intradataset. Conclusion. All the results show that WA-Net extracts more detailed blood vessels and shows superior performance on retinal blood vessel segmentation tasks.


Author(s):  
D. N. H. Thanh ◽  
D. Sergey ◽  
V. B. Surya Prasath ◽  
N. H. Hai

<p><strong>Abstract.</strong> Diabetes is a common disease in the modern life. According to WHO’s data, in 2018, there were 8.3% of adult population had diabetes. Many countries over the world have spent a lot of finance, force to treat this disease. One of the most dangerous complications that diabetes can cause is the blood vessel lesion. It can happen on organs, limbs, eyes, etc. In this paper, we propose an adaptive principal curvature and three blood vessels segmentation methods for retinal fundus images based on the adaptive principal curvature and images derivatives: the central difference, the Sobel operator and the Prewitt operator. These methods are useful to assess the lesion level of blood vessels of eyes to let doctors specify the suitable treatment regimen. It also can be extended to apply for the blood vessels segmentation of other organs, other parts of a human body. In experiments, we handle proposed methods and compare their segmentation results based on a dataset – DRIVE. Segmentation quality assessments are computed on the Sorensen-Dice similarity, the Jaccard similarity and the contour matching score with the given ground truth that were segmented manually by a human.</p>


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 169 ◽  
Author(s):  
Ramakrishnan Sundaram ◽  
Ravichandran KS ◽  
Premaladha Jayaraman ◽  
Venkatraman B

A hybrid segmentation algorithm is proposed is this paper to extract the blood vesselsfrom the fundus image of retina. Fundus camera captures the posterior surface of the eye and thecaptured images are used to diagnose diseases, like Diabetic Retinopathy, Retinoblastoma, Retinalhaemorrhage, etc. Segmentation or extraction of blood vessels is highly required, since the analysisof vessels is crucial for diagnosis, treatment planning, and execution of clinical outcomes in the fieldof ophthalmology. It is derived from the literature review that no unique segmentation algorithm issuitable for images of different eye-related diseases and the degradation of the vessels differ frompatient to patient. If the blood vessels are extracted from the fundus images, it will make thediagnosis process easier. Hence, this paper aims to frame a hybrid segmentation algorithmexclusively for the extraction of blood vessels from the fundus image. The proposed algorithm ishybridized with morphological operations, bottom hat transform, multi-scale vessel enhancement(MSVE) algorithm, and image fusion. After execution of the proposed segmentation algorithm, thearea-based morphological operator is applied to highlight the blood vessels. To validate theproposed algorithm, the results are compared with the ground truth of the High-Resolution Fundus(HRF) images dataset. Upon comparison, it is inferred that the proposed algorithm segments theblood vessels with more accuracy than the existing algorithms.


Circulation ◽  
2000 ◽  
Vol 102 (21) ◽  
pp. 2593-2598 ◽  
Author(s):  
Adnan Kastrati ◽  
Albert Schömig ◽  
Josef Dirschinger ◽  
Julinda Mehilli ◽  
Franz Dotzer ◽  
...  

2017 ◽  
Vol 131 (10) ◽  
pp. 1001-1013 ◽  
Author(s):  
Friederike Held ◽  
Alan W.J. Morris ◽  
Daniel Pirici ◽  
Solveig Niklass ◽  
Matthew M.G. Sharp ◽  
...  

Non-amyloid cerebral small vessel disease (CSVD) and cerebral amyloid angiopathy (CAA) may be interrelated through the damaged basement membranes (BMs) and extracellular matrix changes of small vessels, resulting in a failure of β-amyloid (Aβ) transport and degradation. We analyzed BM changes and the pattern of deposition of Aβ in the walls of blood vessels in spontaneously hypertensive stroke-prone rats (SHRSP), a non-transgenic CSVD model. In 45 SHRSP and 38 Wistar rats aged 18 to 32 weeks: (i) the percentage area immunostained for vascular collagen IV and laminin was quantified; (ii) the capillary BM thickness as well as endothelial and pericyte pathological changes were analysed using transmission electron microscopy (TEM); and (iii) the presence of vascular Aβ was assessed. Compared with controls, SHRSP exhibited a significantly higher percentage area immunostained with collagen IV in the striatum and thalamus. SHRSP also revealed an age-dependent increase of the capillary BM thickness and of endothelial vacuoles (caveolae) within subcortical regions. Endogenous Aβ deposits in the walls of small blood vessels were observed in the cortex (with the highest incidence found within fronto-parietal areas), striatum, thalamus and hippocampus. Vascular β-amyloid accumulations were frequently detected at sites of small vessel wall damage. Our data demonstrate changes in the expression of collagen IV and of the ultrastructure of BMs in the small vessels of SHRSP. Alterations are accompanied by vascular deposits of endogenous Aβ. Impaired β-amyloid clearance along perivascular and endothelial pathways and failure of extracellular Aβ degradation may be the key mechanisms connecting non-amyloid CSVD and CAA.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 261-261
Author(s):  
Junmei Chen ◽  
Ying Zheng ◽  
Jose A. Lopez

Abstract Abstract 261 Endothelial activation and microvascular thrombosis are hallmarks of thrombotic microangiopathy—a group of life-threatening disorders that includes thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Activated endothelial cells release von Willebrand factor (VWF), which can form long strands under flow that remain attached to the endothelium until they are cleaved off by the metalloprotease ADAMTS13. Failure to remove these strands, either because of ADAMTS13 deficiency or oxidation of its cleavage site on VWF, results in microvascular thrombosis. Until now, studies of VWF strands under flow have been performed either in flow chambers with cultured endothelial cells, which does not account for either vessel caliber or geometry, or in live mice, in which it is impossible to study individually the contributions of the various blood components. Recently, we developed a technique to engineer microvessels in vitro that enables us to precisely control several vessel parameters, including lumen diameter and branching architecture, flow patterns, and applied shear stresses, in addition to being able to test individual components of the blood in a system with only human components (PNAS 2012, 109:9342–9347). In the current study, we used this system to examine the effects of a number of variables on the formation of VWF strands from the endothelium of stimulated vessels. We found that VWF fibers can extend across the vessel lumen and attach to opposite sides of the vessel wall in agonist-treated microvessels of up to 200 μm in diameter. Depending on flow conditions, smaller strands can self-associate to form longer and thicker cables. The VWF cables produced solely from VWF contributed by the vessel wall reached lengths up to 5 cm, and became so thick as to be visible, unstained, by light microscopy. When plasma or recombinant VWF was perfused over the VWF cables, the fluid-phase VWF associated with the vessel-bound cables, further thickening them and sometimes inducing web-like structures. The location and structure of the VWF fibers were dependent on vessel geometry and flow pattern; secondary flows that developed at bends or bifurcations in the vessel induced circular clumping of the VWF strands. When whole blood was perfused into the vessels, the transluminal VWF fiber webs caught flowing platelets and leukocytes to form aggregates in the middle of blood stream that sometimes occluded the vessels. The region where the vessel is most likely to occlude also depends on geometry. After this type of trapping, leukocytes were seen to transmigrate across the endothelium. The structure and size of the cables also depended on the agonist employed to stimulate VWF release from the endothelium. Phorbol myristate acetate and shiga-like toxin–2 both produced thicker cables than histamine did, and these were more resistant to ADAMTS13 cleavage. This difference is potentially a result of the former agonists stimulating an endothelial respiratory burst and oxidation of the ADAMTS13 cleavage site on VWF. In summary, our data show that VWF secreted from activated endothelial cells can form transluminal fibers and cables in small vessels. Some of the fibers or cables are resistant to ADAMTS13 cleavage, a likely consequence of their thickness and possibly, oxidation. The webs of VWF fibers or cables in the lumen of small vessels obstruct blood flow by binding to circulating platelets and leukocytes, and are also capable of shredding erythrocytes as they flow past. These findings provide insights into the mechanisms of microangiopathy, and raise the possibility that VWF cables alone, even in the absence of bound platelets, may be capable of occluding small blood vessels and produce many of the characteristic signs of thrombotic microangiopathy. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 10 (2) ◽  
pp. 446-451
Author(s):  
Wu Deng ◽  
Kai Luo ◽  
Qinke Shi ◽  
Yi Yang ◽  
Ning Ning

Although great progress has been made in vessel segmentation, the existing methods still can not accurately segment small vessels. A novel vessel segmentation and automatic diagnosis in coronary angiography image was proposed. During vessel segmentation, a new vessel function based on Hessian matrix was put forward. Then the vessel contour was extracted by the dual-stage region growing with automatic selection of seed point. Next, the automatic diagnosis was realized by vessel skeleton extraction, skeleton point search and diameter measurement. The experimental results demonstrate that our proposed vessel segmentation can extract the main branch contour accurately and have a good effect on the enhancement and segmentation of small vessels. The automatic diagnosis of vessel stenosis is fast. With a relatively accurate diagnosis result, it can provide a good reference and quantitative basis for the final judgment of the doctor.


Cephalalgia ◽  
2000 ◽  
Vol 20 (6) ◽  
pp. 538-545 ◽  
Author(s):  
A Maassen VanDenBrink ◽  
RWM van den Broek ◽  
R de Vries ◽  
N Upton ◽  
AA Parsons ◽  
...  

The mechanistically novel benzopyran derivative SB-220453, which is undergoing clinical evaluation in migraine, exhibits a high affinity for a selective, but not yet characterized, binding site in the human brain. It inhibits nitric oxide release and cerebral vasodilatation following cortical spreading depression as well as carotid vasodilatation induced by trigeminal nerve stimulation in the cat. The aim of our study was to investigate the contractile properties of SB-220453 on a number of human isolated blood vessels (coronary artery, saphenous vein and middle meningeal artery) as well as atrial and ventricular cardiac trabeculae. While sumatriptan induced marked contractions in three blood vessels investigated, SB-220453 was devoid of any effect. In atrial and ventricular cardiac trabeculae, neither SB-220453 nor sumatriptan displayed a positive or negative inotropic effect. Since SB-220453 did not contract the middle meningeal artery, we conclude that potential anti-migraine effects are not mediated via a direct cerebral vasoconstriction. The lack of activity of SB-220453 in coronary artery, saphenous vein and cardiac trabeculae demonstrates that the compound is unlikely to cause adverse cardiac side-effects.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xi-Rong Bao ◽  
Xin Ge ◽  
Li-Huang She ◽  
Shi Zhang

Segmentation of retinal blood vessels is significant to diagnosis and evaluation of ocular diseases like glaucoma and systemic diseases such as diabetes and hypertension. The retinal blood vessel segmentation for small and low contrast vessels is still a challenging problem. To solve this problem, a new method based on cake filter is proposed. Firstly, a quadrature filter band called cake filter band is made up in Fourier field. Then the real component fusion is used to separate the blood vessel from the background. Finally, the blood vessel network is got by a self-adaption threshold. The experiments implemented on the STARE database indicate that the new method has a better performance than the traditional ones on the small vessels extraction, average accuracy rate, and true and false positive rate.


Author(s):  
Joseph T. Keyes ◽  
Stacy Borowicz ◽  
Jacob Rader ◽  
Urs Utzinger ◽  
Jonathan P. Vande Geest

It has been shown that the mechanical properties of tissue change significantly with age and under different disease states [1]. Specifically, blood vessels have shown that modified mechanical properties can be a predictor of impending disease such as advanced atherosclerosis or aneurysm [2].


Sign in / Sign up

Export Citation Format

Share Document