scholarly journals Prediction of Heart Disease using Name Entity Recognition based on Back Propagation and Whale Optimization Algorithms

Objectives/Backgrounds: Nowadays, heart diseases play a very big role in the universe. The Physicians in practice gives various names for heart diseases such as heart attack, cardiac attack, cardiac arrest etc. Among the computerized methods to find the heart disease, Named Entity Recognition (NER) algorithm is used to find the synonyms for the heart disease text to mine the meaning in medical reports and various applications. Methods/Statistical Analysis: The Heart disease text input data given by the physician is taken for the prepossessing and changes the input content to the desired format, then that resultant output fed as input for the prediction. This research work uses the NER to find the meanings of the heart disease text data and uses the existing two methods Deep Learning Models and whale optimization are combined and proposed a new method Optimal Deep Neural Network (ODNN) for predicting the disease. Findings: For the prediction, weights and ranges of the patient affected data via selected attributes are chosen for the analysis. The result is then classified with the Deep Neural Network to find the accuracy of the algorithms. The performance of ODNN is evaluated by means of classification measures such as precision, recall and f-measure values. Improvement: In future, the other classification algorithms or other text data algorithms were used to find for large amount of text data

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florian Stelzer ◽  
André Röhm ◽  
Raul Vicente ◽  
Ingo Fischer ◽  
Serhiy Yanchuk

AbstractDeep neural networks are among the most widely applied machine learning tools showing outstanding performance in a broad range of tasks. We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops. This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals. The network states emerge in time as a temporal unfolding of the neuron’s dynamics. By adjusting the feedback-modulation within the loops, we adapt the network’s connection weights. These connection weights are determined via a back-propagation algorithm, where both the delay-induced and local network connections must be taken into account. Our approach can fully represent standard Deep Neural Networks (DNN), encompasses sparse DNNs, and extends the DNN concept toward dynamical systems implementations. The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Cheng ◽  
Yingying Cai ◽  
Haomai Chen ◽  
Zhuang Cai ◽  
Gang Wu ◽  
...  

The evaluation of the learning process is an effective way to realize personalized online learning. Real-time evaluation of learners’ cognitive level during online learning helps to monitor learners’ cognitive state and adjust learning strategies to improve the quality of online learning. However, most of the existing cognitive level evaluation methods use manual coding or traditional machine learning methods, which are time-consuming and laborious. They cannot fully mine the implicit cognitive semantic information in unstructured text data, making the cognitive level evaluation inefficient. Therefore, this study proposed the bidirectional gated recurrent convolutional neural network combined with an attention mechanism (AM-BiGRU-CNN) deep neural network cognitive level evaluation method, and based on Bloom’s taxonomy of cognition objectives, taking the unstructured interactive text data released by 9167 learners in the massive open online course (MOOC) forum as an empirical study to support the method. The study found that the AM-BiGRU-CNN method has the best evaluation effect, with the overall accuracy of the evaluation of the six cognitive levels reaching 84.21%, of which the F1-Score at the creating level is 91.77%. The experimental results show that the deep neural network method can effectively identify the cognitive features implicit in the text and can be better applied to the automatic evaluation of the cognitive level of online learners. This study provides a technical reference for the evaluation of the cognitive level of the students in the online learning environment, and automatic evaluation in the realization of personalized learning strategies, teaching intervention, and resources recommended have higher application value.


Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

In recent years, due to the increasing amounts of data gathered from the medical area, the Internet of Things are majorly developed. But the data gathered are of high volume, velocity, and variety. In the proposed work the heart disease is predicted using wearable devices. To analyze the data efficiently and effectively, Deep Canonical Neural Network Feed-Forward and Back Propagation (DCNN-FBP) algorithm is used. The data are gathered from wearable gadgets and preprocessed by employing normalization. The processed features are analyzed using a deep convolutional neural network. The DCNN-FBP algorithm is exercised by applying forward and backward propagation algorithm. Batch size, epochs, learning rate, activation function, and optimizer are the parameters used in DCNN-FBP. The datasets are taken from the UCI machine learning repository. The performance measures such as accuracy, specificity, sensitivity, and precision are used to validate the performance. From the results, the model attains 89% accuracy. Finally, the outcomes are juxtaposed with the traditional machine learning algorithms to illustrate that the DCNN-FBP model attained higher accuracy.


Author(s):  
P. Priyanga ◽  
N. C. Naveen

This article describes how healthcare organizations is growing increasingly and are the potential beneficiary users of the data that is generated and gathered. From hospitals to clinics, data and analytics can be a very powerful tool that can improve patient care and satisfaction with efficiency. In developing countries, cardiovascular diseases have a huge impact on increasing death rates and are expected by the end of 2020 in spite of the best clinical practices. The current Machine Learning (ml) algorithms are adapted to estimate the heart disease risks in middle aged patients. Hence, to predict the heart diseases a detailed analysis is made in this research work by taking into account the angiographic heart disease status (i.e. ≥ 50% diameter narrowing). Deep Neural Network (DNN), Extreme Learning Machine (elm), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) learning algorithm (with linear and polynomial kernel functions) are considered in this work. The accuracy and results of these algorithms are analyzed by comparing the effectiveness among them.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 207
Author(s):  
Asma Baccouche ◽  
Begonya Garcia-Zapirain ◽  
Cristian Castillo Olea ◽  
Adel Elmaghraby

Heart diseases are highly ranked among the leading causes of mortality in the world. They have various types including vascular, ischemic, and hypertensive heart disease. A large number of medical features are reported for patients in the Electronic Health Records (EHR) that allow physicians to diagnose and monitor heart disease. We collected a dataset from Medica Norte Hospital in Mexico that includes 800 records and 141 indicators such as age, weight, glucose, blood pressure rate, and clinical symptoms. Distribution of the collected records is very unbalanced on the different types of heart disease, where 17% of records have hypertensive heart disease, 16% of records have ischemic heart disease, 7% of records have mixed heart disease, and 8% of records have valvular heart disease. Herein, we propose an ensemble-learning framework of different neural network models, and a method of aggregating random under-sampling. To improve the performance of the classification algorithms, we implement a data preprocessing step with features selection. Experiments were conducted with unidirectional and bidirectional neural network models and results showed that an ensemble classifier with a BiLSTM or BiGRU model with a CNN model had the best classification performance with accuracy and F1-score between 91% and 96% for the different types of heart disease. These results are competitive and promising for heart disease dataset. We showed that ensemble-learning framework based on deep models could overcome the problem of classifying an unbalanced heart disease dataset. Our proposed framework can lead to highly accurate models that are adapted for clinical real data and diagnosis use.


2014 ◽  
Vol 571-572 ◽  
pp. 717-720
Author(s):  
De Kun Hu ◽  
Yong Hong Liu ◽  
Li Zhang ◽  
Gui Duo Duan

A deep Neural Network model was trained to classify the facial expression in unconstrained images, which comprises nine layers, including input layer, convolutional layer, pooling layer, fully connected layers and output layer. In order to optimize the model, rectified linear units for the nonlinear transformation, weights sharing for reducing the complexity, “mean” and “max” pooling for subsample, “dropout” for sparsity are applied in the forward processing. With large amounts of hard training faces, the model was trained via back propagation method with stochastic gradient descent. The results of shows the proposed model achieves excellent performance.


Sign in / Sign up

Export Citation Format

Share Document