scholarly journals Lung Cancer Image- Feature Extraction and Classification using GLCM and SVM Classifier

Lung cancer is the second most causing cancer when compared to all the other cancers. According to WHO (World Health Organization) lung cancer contributes about 14 per cent among all the cancers. Therefore, early detection and treatment is very much required. Now-a- days, image processing techniques are playing a major role in early detection of disease which is very helpful in further treatment stages. These techniques help in detecting the abnormality of the tissues-tumor in target cancer images. In this research, the proposed methodology is majorly carried out in five phases. In phase one lung cancer and non-lung cancer, images are collected from the lung cancer database. In phase two preprocessing is done by using the Median filter. Median filter is chosen as it preserves the edges i.e, sharp features are preserved. In Phase three, segmentation of the target image is done using Fuzzy C Means. Fuzzy C Means Clustering is chosen as it gives better performance than K-means Clustering. In phase four, the features are extracted using GLCM (Gray Level Co-occurrence Matrix). GLCM have high discrimination accuracy and less computational speed. In phase five, these extracted features are given to SVM classifier for classification of lung cancer from normal lung. The SVM classier achieved accuracy of 96.7% for detecting and classification of lung cancer.

2015 ◽  
Vol 15 (05) ◽  
pp. 1550085 ◽  
Author(s):  
MADHURI TASGAONKAR ◽  
MADHURI KHAMBETE

Diabetes affects retinal structure of a diabetic patient by generating various lesions. Early detection of these lesions can avoid the loss of vision. Automation of detection process can be made easily feasible to masses by the use of fundus imaging. Detection of exudates is significant in diabetic retinopathy (DR) as they are earlier signs and can cause blindness. Finding the exact location as well as correct number of exudates play vital role in the overall treatment of a patient. This paper presents an algorithm for automatic detection of exudates for DR. The algorithm combines the advantages of supervised and unsupervised techniques. It uses fuzzy-C means (FCM) segmentation on coarse level and mahalanobis metric for finer classification of segmented pixels. Mahalanobis criterion gives significance to most relevant features and thus proves a better classifier. The results are validated using DIARETDB0 and DIARETDB1 databases and the ground truth provided with it. This evaluation provided 95.77% detection accuracy.


Author(s):  
Ahmed Elnakib ◽  
Hanan M. Amer ◽  
Fatma E.Z. Abou-Chadi

This paper proposes a Computer Aided Detection (CADe) system for early detection of lung nodules from low dose computed tomography (LDCT) images. The proposed system initially pre-process the raw data to improve the contrast of the low dose images. Compact deep learning features are then extracted by investigating different deep learning architectures, including Alex, VGG16, and VGG19 networks. To optimize the extracted set of features, a genetic algorithm (GA) is trained to select the most relevant features for early detection. Finally, different types of classifiers are tested in order to accurately detect the lung nodules. The system is tested on 320 LDCT images from 50 different subjects, using an online public lung database, i.e., the International Early Lung Cancer Action Project, I-ELCAP. The proposed system, using VGG19 architecture and SVM classifier, achieves the best detection accuracy of 96.25%, sensitivity of 97.5%, and specificity of 95%. Compared to other state-of-the-art methods, the proposed system shows a promising results.


Measurement ◽  
2019 ◽  
Vol 146 ◽  
pp. 800-805 ◽  
Author(s):  
R. Vijayarajeswari ◽  
P. Parthasarathy ◽  
S. Vivekanandan ◽  
A. Alavudeen Basha

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmet Tartar ◽  
Niyazi Kilic ◽  
Aydin Akan

Early detection of pulmonary nodules is extremely important for the diagnosis and treatment of lung cancer. In this study, a new classification approach for pulmonary nodules from CT imagery is presented by using hybrid features. Four different methods are introduced for the proposed system. The overall detection performance is evaluated using various classifiers. The results are compared to similar techniques in the literature by using standard measures. The proposed approach with the hybrid features results in 90.7% classification accuracy (89.6% sensitivity and 87.5% specificity).


2021 ◽  
pp. 1-13
Author(s):  
Malathi Murugesan ◽  
Kalaiselvi Kaliannan ◽  
Shankarlal Balraj ◽  
Kokila Singaram ◽  
Thenmalar Kaliannan ◽  
...  

Deep learning algorithms will be used to detect lung nodule anomalies at an earlier stage. The primary goal of this effort is to properly identify lung cancer, which is critical in preserving a person’s life. Lung cancer has been a source of concern for people all around the world for decades. Several researchers presented numerous issues and solutions for various stages of a computer-aided system for diagnosing lung cancer in its early stages, as well as information about lung cancer. Computer vision is one of the field of artificial intelligence this is a better way to detect and prevent the lung cancer. This study focuses on the stages involved in detecting lung tumor regions, namely pre-processing, segmentation, and classification models. An adaptive median filter is used in pre-processing to identify the noise. The work’s originality seeks to create a simple yet effective model for the rapid identification and U-net architecture based segmentation of lung nodules. This approach focuses on the identification and segmentation of lung cancer by detecting picture normalcy and abnormalities.


Sign in / Sign up

Export Citation Format

Share Document