scholarly journals Impact of Internet of Things in the Healthcare Industry

2020 ◽  
Vol 9 (1) ◽  
pp. 2106-2114

The internet of things concept had infiltrated nearly every field of our life, however, its cutting edge impact in the healthcare industry has been momentous. With tremendous penetration of Mobile health, the functionality of IoT in the healthcare industry had drastically increased. In the research, a systemic literature review was conducted to study the impact of IoT applications in the healthcare industry by analyzing the current and future research work in the field, more focusing on security and privacy in health IoT devices and how it affects different levels of health care employees and consumers’ adoption towards IoT in the health care industry. The study reports research papers, which were included, based on the further filtering process by title, contents, and abstract. A total of 232 primary up-to-date studies were included in the review study. These papers were analyzed according to the research questions defined in the study.

Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 44 ◽  
Author(s):  
Muath A. Obaidat ◽  
Suhaib Obeidat ◽  
Jennifer Holst ◽  
Abdullah Al Hayajneh ◽  
Joseph Brown

The Internet of Things (IoT) has experienced constant growth in the number of devices deployed and the range of applications in which such devices are used. They vary widely in size, computational power, capacity storage, and energy. The explosive growth and integration of IoT in different domains and areas of our daily lives has created an Internet of Vulnerabilities (IoV). In the rush to build and implement IoT devices, security and privacy have not been adequately addressed. IoT devices, many of which are highly constrained, are vulnerable to cyber attacks, which threaten the security and privacy of users and systems. This survey provides a comprehensive overview of IoT in regard to areas of application, security architecture frameworks, recent security and privacy issues in IoT, as well as a review of recent similar studies on IoT security and privacy. In addition, the paper presents a comprehensive taxonomy of attacks on IoT based on the three-layer architecture model; perception, network, and application layers, as well as a suggestion of the impact of these attacks on CIA objectives in representative devices, are presented. Moreover, the study proposes mitigations and countermeasures, taking a multi-faceted approach rather than a per layer approach. Open research areas are also covered to provide researchers with the most recent research urgent questions in regard to securing IoT ecosystem.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zeeshan Ali Khan ◽  
Peter Herrmann

Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions. Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS) which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks. Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that could be useful to make IoT networks more secure.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Yasmine Labiod ◽  
Abdelaziz Amara Korba ◽  
Nacira Ghoualmi-Zine

In the recent years, the Internet of Things (IoT) has been widely deployed in different daily life aspects such as home automation, electronic health, the electric grid, etc. Nevertheless, the IoT paradigm raises major security and privacy issues. To secure the IoT devices, many research works have been conducted to counter those issues and discover a better way to remove those risks, or at least reduce their effects on the user's privacy and security requirements. This article mainly focuses on a critical review of the recent authentication techniques for IoT devices. First, this research presents a taxonomy of the current cryptography-based authentication schemes for IoT. In addition, this is followed by a discussion of the limitations, advantages, objectives, and attacks supported of current cryptography-based authentication schemes. Finally, the authors make in-depth study on the most relevant authentication schemes for IoT in the context of users, devices, and architecture that are needed to secure IoT environments and that are needed for improving IoT security and items to be addressed in the future.


2021 ◽  
Author(s):  
Priyanka Gupta ◽  
Lokesh Yadav ◽  
Deepak Singh Tomar

The Internet of Things (IoT) connects billions of interconnected devices that can exchange information with each other with minimal user intervention. The goal of IoT to become accessible to anyone, anytime, and anywhere. IoT has engaged in multiple fields, including education, healthcare, businesses, and smart home. Security and privacy issues have been significant obstacles to the widespread adoption of IoT. IoT devices cannot be entirely secure from threats; detecting attacks in real-time is essential for securing devices. In the real-time communication domain and especially in IoT, security and protection are the major issues. The resource-constrained nature of IoT devices makes traditional security techniques difficult. In this paper, the research work carried out in IoT Intrusion Detection System is presented. The Machine learning methods are explored to provide an effective security solution for IoT Intrusion Detection systems. Then discussed the advantages and disadvantages of the selected methodology. Further, the datasets used in IoT security are also discussed. Finally, the examination of the open issues and directions for future trends are also provided.


2022 ◽  
pp. 132-148
Author(s):  
Kiran M. B. ◽  
Martin George Wynn

The Internet of Things (IoT) is formed by a set of physical objects with embedded sensors, connected using a network so that they can collect and exchange data. Though the concept looks simple, its deployment in industry has enormous potential to bring major business benefits and radical change. This chapter examines IoT technology and how it is being used in the corporate environment. Based on a review of existing literature and case examples, the various definitions and elements of IoT are discussed, followed by an assessment of how IoT is being used and what benefits are being delivered. Some key emergent themes are then examined – security aspects, the significance of 5G networks, and the need for an IoT strategy and project implementation guidelines. The chapter concludes by outlining possible areas for future research and suggests a step-change in the mega-infrastructure connecting IoT devices is imminent.


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 605-622
Author(s):  
David Carrascal ◽  
Elisa Rojas ◽  
Joaquin Alvarez-Horcajo ◽  
Diego Lopez-Pajares ◽  
Isaías Martínez-Yelmo

Recently, two technologies have emerged to provide advanced programmability in Software-Defined Networking (SDN) environments, namely P4 and XDP. At the same time, the Internet of Things (IoT) represents a pillar of future 6G networks, which will be also sustained by SDN. In this regard, there is a need to analyze the suitability of P4 and XDP for IoT. In this article, we aim to compare both technologies to help future research efforts in the field. For this purpose, we evaluate both technologies by implementing diverse use cases, assessing their performance and providing a quick qualitative overview. All tests and design scenarios are publicly available in GitHub to guarantee replication and serve as initial steps for researchers that want to initiate in the field. Results illustrate that currently XDP is the best option for constrained IoT devices, showing lower latency times, half the CPU usage, and reduced memory in comparison with P4. However, development of P4 programs is more straightforward and the amount of code lines is more similar regardless of the scenario. Additionally, P4 has a lot of potential in IoT if a special effort is made to improve the most common software target, BMv2.


Author(s):  
Rahul Verma

The internet of things (IoT) is the new buzzword in technological corridors with most technology companies announcing a smart device of sorts that runs on internet of things (IoT). Cities around the world are getting “smarter” every day through the implementation of internet of things (IoT) devices. Cities around the world are implementing individual concepts on their way to becoming smart. The services are automated and integrated end to end using internet of things (IoT) devices. The chapter presents an array of internet of things (IoT) applications. Also, cyber physical systems are becoming more vulnerable since the internet of things (IoT) attacks are common and threatening the security and privacy of such systems. The main aim of this chapter is to bring more research in the application aspects of smart internet of things (IoT).


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Umair Khadam ◽  
Muhammad Munwar Iqbal ◽  
Meshrif Alruily ◽  
Mohammed A. Al Ghamdi ◽  
Muhammad Ramzan ◽  
...  

In our daily life, Internet-of-Things (IoT) is everywhere and used in many more beneficial functionalities. It is used in our homes, hospitals, fire prevention, and reporting and controlling the environmental changes. Data security is the crucial requirement for IoT since the number of recent technologies in different domains is increasing day by day. Various attempts have been made to cater the user’s demands for more security and privacy. However, a huge risk of security and privacy issues can arise among all those benefits. Digital document security and copyright protection are also important issues in IoT because they are distributed, reproduced, and disclosed with extensive use of communication technologies. The content of books, research papers, newspapers, legal documents, and web pages are based on plain text, and the ownership verification and authentication of such documents are essential. In the current domain of the Internet of Things, limited techniques are available for ownership verification and copyright protection. In the said perspective, this study includes the discussion about the approaches of text watermarking, IoT security challenges, IoT device limitations, and future research directions in the area of text watermarking.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-23
Author(s):  
Morshed Chowdhury ◽  
Biplob Ray ◽  
Sujan Chowdhury ◽  
Sutharshan Rajasegarar

Due to the widespread functional benefits, such as supporting internet connectivity, having high visibility and enabling easy connectivity between sensors, the Internet of Things (IoT) has become popular and used in many applications, such as for smart city, smart health, smart home, and smart vehicle realizations. These IoT-based systems contribute to both daily life and business, including sensitive and emergency situations. In general, the devices or sensors used in the IoT have very limited computational power, storage capacity, and communication capabilities, but they help to collect a large amount of data as well as maintain communication with the other devices in the network. Since most of the IoT devices have no physical security, and often are open to everyone via radio communication and via the internet, they are highly vulnerable to existing and emerging novel security attacks. Further, the IoT devices are usually integrated with the corporate networks; in this case, the impact of attacks will be much more significant than operating in isolation. Due to the constraints of the IoT devices, and the nature of their operation, existing security mechanisms are less effective for countering the attacks that are specific to the IoT-based systems. This article presents a new insider attack, named loophole attack , that exploits the vulnerabilities present in a widely used IPv6 routing protocol in IoT-based systems, called RPL (Routing over Low Power and Lossy Networks). To protect the IoT system from this insider attack, a machine learning based security mechanism is presented. The proposed attack has been implemented using a Contiki IoT operating system that runs on the Cooja simulator, and the impacts of the attack are analyzed. Evaluation on the collected network traffic data demonstrates that the machine learning based approaches, along with the proposed features, help to accurately detect the insider attack from the network traffic data.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Floris Van den Abeele ◽  
Jeroen Hoebeke ◽  
Ingrid Moerman ◽  
Piet Demeester

As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains.


Sign in / Sign up

Export Citation Format

Share Document